2.

Thg

12.4,

De%’ p Examples and Case Studies of Program Modeling and Programming with RTOS-2

A macro function ReceiveStr (&Str) uses function ‘void portlO_ISR_Input (*portlOdata)’ to return an
input string Str. The ‘portIO_TSR_input’ receives the characters one by one from the port on successive
calls. Similarly, a macro function SendStr (&ApplStr) is used by the function void Port_OutStr (unsigned
char [] *applStr) to send .. ~utput string. portlO_ISR_Output sends a character to the port.
task_ReadPort begins only when a semaphore SigReset is posted by the resetTask. (a) task_ReadPort
takes the message from the queue MsgQStart and gets the pending queue messages, requestHeader and
requestStart. It encrypts these two strings and sends to the Port_IO, which transmits it to the host through
the transceiver i modem. It receives host message hostStr through the transceiver. Host specifies, by
the hostStr, we host PIN. This PIN is the one used for the bank authorization PIN of the card. (b) It posts
a semaphore SemPW flag to the waiting task task_PW if the presently running task verifies the hostPIN.
It wai*s for a message from the queue MsgQPW and receives userPW after deciphering the port input
data string. (c) It posts semaphore SemAppl, in case the user password stored in a file at the EEPROM is
verined. It posts a different semaphore SemAppl, if it verifies the user password. It sends in the end a
close request message into a queue MsgQApplClose. Message is requestApplClose to the Port_IO and
receives encrypted string “Closure Permitted”. The tasks delete on deciphering.

task_PW after encryption on taking the pending SemPW is to send the string requestPW. When it takes
SemPW, it sends the requestPW into the MsgQPW. task_ReadPort will send it to the host through the
10 Port, Port_IO, in order to identify the user at the host.

task_Appl runs on taking the semaphore SemAppl and executes the operations. The operation may
(i) modify user password, (ii) print mini statement of bank account of the user, (iii) eject requisite cash
from the host, (iv) request for accepting the envelope with cash, (v) request for a print of this transaction
and (vi) request for a transfer to another party. It interacts through task_ReadPort by sending the
messages through the queue MsgQAppl.

task synchronization model is also shown in Figure 12.19.
[:Reset Task] Ilask_ReadPon! [task_PW | [task_Appl |
Sem Reset -
Request Header Sem PW Time
Request Start Request-
Password
T MsgQPW
SemAppl
» RequestAppl
N MsgQ Appl

MsgQ Appl.close
Request_Appl close

Fig. 12.19 Tasks and the synchronization model

5 Exemplary Codes

Examwle 12.2 gives the exemplary coding procedure for an application of this card.

' ’ Embedded S#t&ms

Example 12.2

1. /* Preprocessor definitions for maximum number of interprocess events to let the SmartOS %Boqtate

memory for the Event Control Blocks */
#define SmartOS_MAX_EVENTS 24/* Let maximum IPC events be 24 */
#define SmartOS_SEM_EN 1/* Enable inclusion of semaphore functions in application. */

3
¥

#define SmartOS_Q_EN 1/* Enable inclusion of queue functions for sending the string pouitts% to

task_ReadPort * /
#define SmartOS_task_Del_En = 0 /* Disable task deletion by SmartOS at the start. */

/* End of preprocessor commands for enabling IPC functions of the SmartOS*/ ’:

2. /* Specify all user prototype of the reset task function that is calied by the main function and 3 q> be

scheduled by SmartOS first at the start. In Step 11, we will be creating all other tasks within the rese
Remember: Static means permanent memory allocation. *I

static void resetTask (voxd *taskPointer);

static SmartOS_STK_rese;TaskStack [resetTask_StackSize];

3. /* Define public variable of the task service and timing functions */ ;
#define SmartOS_TASK_IDLE_STK_SIZE 100 /* Let memory allocation for an idle state task st
be 100*/
#define SmartOS_TICKS_ PER_SEC 1000 / * Let the number of ticks be 1000 per second. An RT
will interrupt and thus tick every 1 msto update counts. */ '

#define nesetTask_Pnonty 1 /* Define reset task in main priority */

#define resetTask_StackSize 100 /* Define reset task in main stack size */

STAF _In = 0; /*Define flag for signaling modem interrupt for receiving a character. */
STAF_Out = 0; /*Define flag for signal from a modem interrupt after sending a character. */
/*

3
i
3
:
§

1 thsk.

ize

*/

3. /* Prototype definitions for three tasks for the car application codes after reset. */
static void task_ReadPort (void *taskPointer);

static void task_PW (void *taskPointer);

static void task_Appl (void *taskPointer);

4. /* Definitions for three task stacks. */

static SmartOS_STK task_ReadPortStack [task_ReadPortStackSize];
static SmartOS_STK task_PWStack [task_PWStackSize];

static SmartOS_STK task_ApplStack [task_ApplStackSize];

5. /* Definitions for three task stack size. */

#define task_ReadPortStackSize 100 /* Define task 2 stack size*/
#define task_PWStackSize 100 /* Define task 3 stack size*/

#define task_ApplStackSize 100 /* Define task 4 stack size*/

6. /* Definitions for three task priorities. */

#define task_ReadPortPriority 2 /* Define task 2 priority */

#define task_PWPriority 3 /* Define task 3 priority */

6. /* Prototype definitions for the semaphores. */

SmartOS_EVENT *SigReset; /* First task that resets the card posts it. */

SmartOS_EVENT *SemPW; /* task_PW posts it to send request for getting user password throilgli the

host. */

Desi&n ';Examples and Case Studies of Program Modeling and Programming with RTOS-2 599

Sma M _EVENT *SemAppl; /* Needed when using Semaphore as flag for interprocess communication
betwbdh task_ReadPort and task_PW. */

7. 14 % jtotype definitions for the queues, */

Sma _EVENT *MsgQStart; /* Needed for IPC between resetTask and task ReadPort *!

void FMsgQStart [QStartMessagesSize]; /* Let the maximum number of message pointers at the queue be
QSta essagesSnze */

Smaft8_EVENT *MsgQPW:; /* Needed for IPC between task_PW and task ReadPorL */

void |¥] ngPW [QPWMessagesSize]; /* Let the maximum number of message pomters at the queue be
QPW ssage351ze */

essagessze */

S_EVENT *MsgQApplClose; /* Needed for IPC between task_Appl and task Reade‘t */

void } gQApplClose [QAppICloseMessagesSize]; /* Let the maximum number of message pomters at
the qugae be QApplCloseMessagesSize. */

8. /* IDEfine both queue array sizes. Assume a maximum of 16 strings can be sent in a queue */

#de QStartMessagesSme 16; /* Define size of start message pointer .queue when full */

#def QPWMessagesSme 16; /* Define size of password message pointer queue when full */

#defi QApleessagesSue 16; /* Define size of application message pointer queue when full */

#def} QApplCloseMessagessze 16; /* Define size of application message pointer queue when full */
9./*Dp fine Semaphore initial values, 0 when used as an event flag and 1 when resource key. */

pset = SmartOSSemCreate (0); /* Declare mmal value of semaphore 0 for using it as an event flag
setTask. */

7— SmartOSSemCreate (0); /* Declare initial value of wmaphore O for using it as an event flag
k_ReadPort */

pl = SmartOSSemCreate (0); /* Declarc initial value of semaphore 0 for using it as an event ﬂag
k_ReadPort */

/* Dgfipe a top of the message pointer array. QMsgPointer points to top of the Messages to start with. */
Msg® ﬁrt SmartOSQCreate (&QStart [0], QStartMessagesSize);

MsgQH W = SmartOSQCreate (&QPW [0], QP'WMessagesSize);

MsgQA pl = SmartOSQCreate (&QAppl [0], QApplMessagesSize);

MsgQApplClose = SmartOSQCreate (&QApplClos~ 0], QApplCloseMessagesSize);

10./% ‘1 y other SmartOS Events for the IPCs. */

11. " dode similar to steps for ISR_CharlInt and Task_ReadPortA in Example 9.16. These were for reading
from|P rt A and storing a character. Here, we have Port_IO. */

/* Prg ‘ pe Declarations for modem Port_IO input and output strings. */

charf iStr; /* Port_IO input string to hold the data from the host through the demodulator circuit of
moddnt.*/ .

char [] ApplStr; /* Port_IO string, which the modem transfers to host after modulauon */

- Embedded i{stbms

]

unsigned char *portIndata; unsigned char *portOutdata; ’
void portIO_ISR_Input (*portIndata); /* Prototype declaration for receiving an input character. *I
void portlO_ISR_Output (*portOutdata); /* Prototype declaration for sending an output character. *
/* Start of Port_IO Input Interrupt Service Routine */ '
void portIO_ISR_Input (*portlOdata) {
disable_PortIO_InIntr (); /* Function for disabling another interrupt from port IO input. */ e
/* Insert Code for reading Port I/O bits i
portlOdata = &Str;

*/ .

/* Start of Port_IO Output Interrupt Service Routine */ ¥
void portlO_ISR_Output (*portiOdata) { !
disable_PortIO_OutlIntr (); /* Function for disabling another interrupt from port I/O output */
/* Define a macro for sending a String */ i1
unsigned byte i; 2
#define SendStr (&ApplStr) (i
portIOdata = &ApplStr; i = 0; STAF Out =1,

while (STAF_Out = =1 && ApplStr [i] | = NULL) {

portlOdata = ApplStr [i]; / *Pick a character from the queue message. */
portIO_ISR_Output (&portlOdata); /*Send it to the Port_IO for the modem output. */
i++; /* Be Ready for next Character */

STAF_Out =0; /*Port interrupt when one character sent by setting STAF_Out again. */
}
ApplStr = “”; /* Clear the Queue message for the new one*/
&AppiStr = ApplStr [0];

) /* End of the macro function SendStr. */

/* Define a macro function for string comparison. Note: ‘C’ function szrcmp is available at a C llw. In
order to optimize codes, we age not using strcmp library function, but our own macro here. */
#define boolean strcmp (AppiStr, Str) (

)

1% *} ’
/* Define a macro for receiving a string */ K
#define ReceiveStr (&Str) (

while (STAF_In !=1) { }; i=0;
/* Execute interrupt service routines for each character received at modem Port_IO*/
while (STAF_In == 1 && Str [i] != NULL) {

portIO_ISR_Input (&portIOdata); };
STAF_In =0; /* Remember: as soon as Port A is read STAF will reset itself to reflect ;
next interrupt status. */ £
Str [i] = portlOdata;/* Write port I/O input array element from the returned data*/
i++}
) /* End of the macro function ReceiveStr. */
12. /* Start of the codes of the application from Main.
Note: Code steps are similar to in Example 9.16 */

j Examples and Case Studies of Program Modeling and Programming with RTOS-2

rtOSinit ();

* Create Reset task, resetTask that must execute once before any other. task creates by defining its
ity as resetTask, stack size and other TCB parameters. */

efTask_Priority);

M Create other main tasks and interprocess communication variables if these must also execute at least
icq after the resetTask. */

* Start SmartOS RTOS to let us RTOS control and run the created tasks */

¥ I : nite while-loop exists in each task. So there is never a return from the RTOS function SmartOSStart
() K
14.
I*
1*

1 *** End of the Main function ***/
*/

he codes of the application reset task that main created. */

17. ic void resetTask (void *taskPointer){

18. }* Start Timer Ticks for using timer ticks later. */

SthdtOSTickInit (); /* Function for initiating RTCSWT that starts ticks at the configured time in the

sﬁ 40S configuration preprocessor commands in Step 1 */.

19. I* Create three tasks defined by three task identities, task_ReadPort, task_PW, task_Appl and the stack

es, other TCB parameters. */

drtOStaskCreate (task_ReadPort, void (*) 0, (void *) & task_ReadPortStack [task_ReadPortStackSize],

5 ReadPortPriority);

rqriOStaskCreate (task_PW, void (*) 0, (void *) & task_PWStack [task_PW StackSize}, task_PWPriority);
OStaskCreate (task_Appl, void (*) 0, (void *) & task_ApplStack [task_ApplStackSize],

: pplPriority);

estHeader and post it in message queue. */

tOSQPost (MsgQStart, ApplStr);

; ‘lStr = SmartOSEncrypt (requestStart, DES); /* Using an RTOS function encrypt requestStart and
it in message queue. */

tOSQPost (MsgQStart, ApplStr);

rtOSSemPost (SigReset); /* Post Semaphore event ﬂag */

2].y* Suspend the Reset task with no resumption later, as it must run once only for initiation of timer ticks

& » cronso s

and for creating the tasks that the scheduler controls by preemption. */ ey
SmartOStaskSuspend (resetTask_Priority); /*Suspend Reset task and control of the RTOS passes to g"u;r
tasks of waiting execution*/ #
22. }/* End of while loop */ q
23. } /* End of resetTask Codes */
/**/
24. static void task_ReadPort (void *taskPointer) { #
while (1) { ¢
25. /* Wait for IPC from resetTask. */ :
SmartOSSemPend (SigReset, 0, SemErrPointer);

26. /* Wait for a message for requestHeader from queue MsgQStart. */ it
&QStart = SmartOSQPend (MsgQStart, 0, QErrPointer); 3 .
SendStr (&QStart); /* Send it to transceiver Port_IO. Note: after sending the message in string
becomes null, . */

27. /* Wait for a message for requestStart from queue MsgQStart. */

&QStart = SmartOSQPend (MsgQStart, 0, QErrPointer);

SendStr (&QStart); /* Send it to modem Port_IO. */ 5
/* Receive and decipher a string from the transceiver Port 10. */ =
ReceiveStr (&Str); 4

ApplStr = SmanOSDécrypt (Str, DES); /* Using an RTOS function, decrypt the input string from the: lpm

*/ §
28. /* Code for saving the Host PIN and, if verified, then application commands from the host is glqo
saved. The savings are at the protected file structure. */

SmartOSSemPost (SemPW); /* Post event flag for requesting a password at MsgQPW. */
SmartOSTimeDly (100); /* Delay for 100 ms to allow lower priority task task_PW run. */

29. /* Wait for a message for requestPassword from queue MsgQPW. If available, send requcst and ::
wait for the password. */ i
&QPW = SmartOSQPend (MsgQPW, 0, QErrPointer); 4
SendStr (&QPW); /* Send password request to modem Port_IO. */ A
ReceiveStr (&Str); /* Receive a String from the modem Port IO. */ &
ApplStr = SmartOSDecrypt (Str, DES); /* Using an RTOS function, decrypt the input string
for password from the host */

‘30. /* Code for verifying the deciphered user password at the protected memory or file
data. If verified, then application commands from the host by posing event flag

SemAppl. */

31 /* Wait for a message for requestAppl! from queue MsgQAppl. If available, send request and wa@ fqr
the application command and user data. */ i1
&QApp! = SmartOSQPend (MsgQAppl, 0, QErrPointer); Ity
SendStr (&QAppl); /* Send password request to. transceiver Port_IO. */ i
ReceiveStr (&Str); /* Receive a String from the transceiver Port 10. */ i

g tExampies and Case Studies of Program Modeling and Programming with RTOS-2

ot

4

Hr = SmartOSDecrypt (Str, DES); /* Using an RTOS function, decrypt the input string for apphcatlon
co % d and user data from the host */
32.y ode for using the user data and executing received apphcatlon command */

gl ety

33.§ smg an RTOS function, encrypt request closing request and post it in message queue The closing
requ | is from a message queue MsgQApplClose. Then retrieve it from queue m QApplClose after
enclkyption. */

JabbiClose = SmartOSEncrypt (requestApplClose, DES);
¢ QApplCIose)
Str (&Str),

lete this task and other low priority tasks. */
If 1t -_,« np (ApplStr, “Closure Permitted”) { ,
d‘ﬂ _task._DelEn = 1 /* Enable task deletion by SmartOS. */
oS 1 Del (task_ReadPortPriority); OStaskDel (task__PWPnomy), OStaskDel (task._Appanonty) }
} 74 Had of While loop */
/* knd of task_ReadPorts Codes. *
/** ***/
40.1, s ptic void task_PW (void *taskPointer) {
while il) {
414/ }Walt for IPC from task_ReadPort. */
S ’! SSemPend (SemPW, 0, SemErrPointer); SRR R
42 }/4Code for retrieving one string from the protected file structure. It is used for requesting the
paspy rdfromtheuseratdlehostofthecard */ e o e

43, / 3 MWrite the array elements after encrypnon *
n tr = SmartOSEncrypt (requestPassword, DES)

: eéé SQPost (MsgQPW, ApplStr); . .

SSemPost(SemAppl) SmartS'I"uneDly(lOO), .
S ” DSTimeDlyResume (task_ReadPortPriority); /* Resume Delayed task taSL
cid 9' *f

44. } End of While loop */
45}/%¥End of task_PW Codes. */

/*ﬂ& g **#******************************/

46} sfdeic void task _Appl (void *taskPointer) {

W, D/

S : §0 SSemPend (SemAppl 0, SemErrPointer); I* Walt for IPC from task_ReadPort. */ ‘
'47f/¥XCode for retrieving one string for requesting the apphcatnon commands requestAppi from the

pr(}t . ed file structure. It is for requesting the password from the user at the host of the card. */'

5 5

_—

48. /* Write the array elements after encryption. */
AppiStr = SmartOSEncrypt (requestAppl, DES);
SmartOSQPost (MsgQStart, ApplStr);
49. /* Resume Delayed task task_PW. */
SmartOSTimeDlyResume (task_PWPriority);

} 7* End of While loop */
50. Y/* End of task_Appl Codes. */

-

o R A i R PR AR

/**/

~12.5 CASE STUDY OF A MOBILE PHONE SOFTWARE FOR KEY INPUT

Mobile phones are smart. Each phone has many APIs. Example of APIs are phone, SMS (short
service), MMS (multimedia messaging service), e-mail, address book, web browsing, calendar, tas
list, WordPad, Pocket-Word, Pocket-Excel, note-pad for memos, Pocket-PPTs, slide show andcamerd.

keypad. The present case study relates to ‘SMS create application’ in a mobile phone with T9 keypad for inputs.
Section 12.5.1 gives the requirements of ‘SMS create and send application’. Section 12.5.2 giyes the

hardware. Section 12.5.5 describes software architecture. Section 12.5.6 describes the software t
Synchronization Model for the application.

12.5.1 Requirements

A processor, keypad, screen, scratch pad memory, persistence memory and communication units are réquired
for SMS create and send application. Scratch pad memory addresses are used for temporary saving of chara

identical change is reflected in other correlated objects. For example, a name is edited in a file for the Cantacts,
the same change takes in the file for Address book for sending the e-mails.

Figure 12.20 shows specific units, which are used for the SMS text create application. The screen is
displaying the menu. Figure 12.20 shows that there are four cursor keys (up, down, left and right) denotedlby C1,
C2, C3, and C4. In computer keyboard, four different cursor keys are used. The mobile cursor key in the kelypad
is such that it functions as four keys. When the key is pressed towards the left the cursor moves left (<), when
it is pressed towards the right the cursor moves right (—), and so on for up (T or down ({).

In eddition there are four command keys (right-corner second-row, left-corner second-row, right c{)mer
first-row and left-corner first-row) denoted by key2Row2, key1Row2, key2Row1 and key IRow1. Also, there
are nine T9 keys for numbers 1 to 9 as well as for alphabets a to z (or A to Z). There are two mode-keys
(keyM1 and keyM2) and one keyO key for keying in a text character number 0 or space. Alphanumericjtext in
small case or capital case is controlled by a mode-key’s state. Text character entered on keying depeinds on
state of the T9 key. [Recall Examples 3.6 and 6.8 and Section 6.3]. ‘

D*shw Examples and Case Studies of Program Modeling and Programming with RTOS-2

605

1 four-way Cursor key:
Up, down, left, right (C1,
C2, C3, C4)

4 Command/Menu keys:
Select, Back, Dial, Finish
(key1row1, key2row1,
key1row2, key2row?2)

== Screen -

7
SISISISS SIS SIS IS SIS
SIS IISIS SIS LSS SIS
SISLIS SIS 2SS L1
»,Communication /.,

SISLLLS LSS LSS/
(1SS LSS
SLLLLS LSS LSS S

" Memory for
T9 Keypad marked 110 9 Memory Inbox réem
(key1,..., key9) for 160 N :
Archive and
Characters
3 mode keys marked *, 0, SMS Template
(KeyM1, 0, KeyM2) SMSes
Scratch Pad memory Persistence memory

Rd
Table]

12.6.

ig. 12.20 Mobile phone Keypad, screen, memory and communication units for SMSes

quirements of SMS create and send application module of SMS creation system is tabulated in

Table 12.6 Requirements of ‘SMS create and send application” module in a SMS
creation system
quﬁement Description
Purpose To create an SMS message and communicate using a T9 format keypad and using the tasks for
inserting a desired mobile number into a list, editing a message and then sending the message.
Fungtions of 1. An option is selected by using cursor key for moving the cursor displayed on screen and then
the gystem pressing command key Key 1Row1.When a set of options consisting of 4 notifications, one for a

. For choosing the application SMS creating text, the cursor and command-cum-options-select

command Messages, next for command-option Text Messages, next for application Create Message
and last for Text, are selected generates an event E_SMS, [Section 8.4] that signals a task for
creation of text messages in alphanumeric format. The characters are entered and edited with T9
keypad of nine keys from numbers I to 9, one four-way cursor keys, four command keys, two
mode keys marked * and #, and one key marked 0.

When any key is clicked by the user, its state is computed based upon the key’s earlier state,
cursor’s present position, timer-status and count, and then a notification E_NewState is posted
into a message box for an ISR, task or application that initiates the required action.

(KeylRow1) keys are used as follows: (a) When command key (KeylRowl) is used to select
command Messages, a command-option is then selected using a GUI. (b) User selects Text Messages
option by clicking for the displayed option ‘Text messages’. (c) A menu then shows up for selecting
one of the following using the cursor down and up keys: Create message, Inbox, Sent items, Archive,
Tempilates, My folders, Distribution lists, Delete messages and Message settings. User selects ‘Create
message’ for selecting SMS creation application. (d) A menu then shows up for selecting type of
message to be created. Cursor can select one of the following menu items on display: Text and
Numeric page. User selects Text for creating SMS text. When option Text is selected then event
E_SMS posts (signals) to start execution of ‘SMS create and send application’ when the user
finishes selection of four options Messages, Tex: Messages, Create Message and Text in sequence.

(Contd)

Requirement

Description 11

GUIs

Inputs

Signals, events
and
notifications

Outputs

A GUTI uses display of screen menu or text and cursor, command-select and cursor-position hnp
keys. The cursor position can be changed up, down, left and right by using C1, C2, C3 and C4~
cursor when it points on the screen to a line of menu for a command, it shows that menu iters |
blue or other background. When the cursor points to a character in a line of text or phone numig
shows a vertical line at the right of the character position. At the cursor position, a text caf
selected or entered by a click of command-select key (KeylRow1). At the cursor positiopd the
shown character can be cleared by a click of clear or back key (Key2Row1). g ’

L.
2.
3.

. When mobile is inactive, display screen startup display shows up on key2row? interrupt, W

message by keying in from T9 keypad and (iii) transmitting it over the mobile, respectiv . |
causes an ISR_key2row2 routine exccuﬂon and state of mobile becomes wake up state S

S_Idle by at another key2row2 mterrupt. Display screen switches off (shuts down) after a § 0
interval, say, 15 s and the state of mobile becomes sleeping state S_Sleep (only on incoming
there will be port interrupt, and mobile wakes to state S_Wake and screen shows ‘start-up disph

State of mode key (keyM1 and keyM?2) pair-marked * and # and that defines the functioning
State of keyO (0, 0), (1, space), (1,0), (1, new-line) or (1, space), when editing an SMS. [S
keyO0 (0, 0) or (1, 0) when dialling a number.]

State for command from one of the four command keys (keylrow1, key2rowl keylrov& i
key2row2). :
State of cursor-input on the cursor clicks on move up, down, left or right using Clkey, G4
C3key or Cékey. '
The E_NewState and message for state of key are posted on the interrupts from co : k%y
or any other key. 1
Event E_SMS, which starts SMS_Create_Text application, happens on posting of a set d‘fdur
GUI notifications - MsgMessages, MsgTextMessages, MsgCreate and MsgText. [MsgMes
notification on selecting option Messages, MsgTextMessages on sclecting option Text_mes) '
MsgCreate on selecting option Create_Message, and MsgText message on selecting option
Notifications for display on completion of tasks. For example, after completing the sendj
SMS, display-notification ‘Message sent” and before completing the transmission of SMS ‘Se;
message’. &

State of a T9 key (keyl,...., key9) . i
azt

is no action for a period longer than a programmed period = 15s.]
Another software timer’s time-out interrupt ISR_T_Out_Help_Option when a cursor or m
menu is displayed then a pop-up help displays after a period longer than the programmed peri

SMS_Create_Text string, which is displayed on the screen and is also saved in scratchpad

during the editing and also saved in sent folder after sending the SMS. '

Screen menu text lines for displaying option(s), text of menu, marked text or character to 1
enable its selection by clicks. j

Help menu text display to display action, which will take place on selecting an option afwt

T_Out_Help_Option interrupt. Option is assumed as one at which cursor points. : ’

(Contd)

qun Examples and Case Studies of Program Modeling and Programming with RTOS-2

Réqra‘remem Description

Sergtchpad The memory is used as scratchpad memory for 160 characters maximum in an SMS.
Mempory

Perdistence The memory is allotted in the system at persistence memory addresses (in flash memory) for SMSes in
merhory Inbox, Sent, Archive and Template.

Desjgn 1. Power Dissipation: Battery operation

metfics 2. Performance: 3 minute for 1 SMS message creation and send

3. Engineering Cost:. US$ 20000 (assumed) for software

4. Manufacturing Cost: None once the codes are ready and tested

Testiand 1. All commands and options functioning are tested.
validation v

con:i‘ﬁons

tioning can be explained in detail as follows:

and: For Messages command, a key (for example) left-hand first-row command key (KeylRowl)
and user selects the command Messages.

ions: On selection by clicking KeylRow1 when cursor is at a displayed command Messages, the
d-options display. These options are used for selecting a command-option using the cursor at one of

ber, Add e-mail, Add list, Edit message, List recipient and Send.]
ing and creating the alphanumeric text SMS: To enable the alphanumeric character entries using

key again or another key within a prefixed time interval.

s can be explained as follows: Example 3.6 showed how a key marked 5 (5 in first line in large font and
Jk! in|small font in second line marking on key5 surface) on pressing can produce the different states after
transition from idle state (0, 5) in sequences represented by (1, 5), (1, j), (1,k), (1, D), (1, 5), 1, (1,k), 1,1,
a, S)Ell user does not repeatedly press keyS within an interval At or presses another key in state (0, n) where
n is fgr any other T9 key.

608

First character inside bracket in a key-state representation shows whether key is inactive (0) or activg (1).
There is transition to 1 when a key is pressed and to O when it’s key-state is accepted as the input undefgoes
transition to idle state. A state is accepted as input if within a time interval At either the user presses ther
key or there is no repeat press of the same key. The second character after comma in a state represenfation
shows the number or text that will be sent in ASCII code format if the active state remains unchangeq in a
preset time interval At and mode M2 key has not modified the mode to text in another language. ‘

Other keys also have similar characteristics. The transition of a key state occurs if it is pressed again within
an interval. Let us recapitulate Section 6.3, which described a model of state machine. Example 6.8 gaye the
state table and Example 6.9 gave C codes for the state table.

12.5.2 Class Diagram and Classes

An SMS application program uses the principle of Orchestrator software (Figure 12.2). The inputs from the
keys for commands, GUIs and data inputs are taken as equivalent to sensor inputs. A notification or gignal
issued after each input is taken as equivalent to actuator output. Let us therefore define an Orchestrator] class
for the application.

Display screen is used during every input and every output in the mobile device. There is a start up d
screen. A typical example is screen display, which shows time on right hand corner, service company .
the centre, date in next line, left side bar for antenna signal strength, right side bar for battery power and also
shows a start up display graphic. The options are according to provisioning by the service provider
image for wall-display selected by user. Let us design a Task_ScreenDispl class. It is interfaced to the
method. The graphic is chosen from the options to user such as Beach, Car, Coral, Daisy, Dance,
Dragon and others. Task_ScreenDispl extends the other classes, the objects (instances) of which are uged in
menu item display, GUIs or displaying current action or help text and other display.

SMS creation and send application has a number of concurrent processing tasks. Let us
Task_SMS_CreateTextSend.

Task_ ScreenDlspl and Task_SMS CreateTextSend for creatmg and communicating SMS message.
1. ORCHESTRATOR class extends to Orchestrator_CommandsGUISs and to Orchestrator_SMSCrea Send
2. Task_Messages, Task_TextMessages, Task_CreateMessage and Task_Text and interface keypad
interrupt ISR_KINT.
3. Task_SMS_CreateTextSend extends to Task_AddNumber, Task_AddEmail, Task_Ad let
Task_EditMessage, Task_ListRecipient and Task_ Send.
4. Four types of screen displays are used during SMS create and send application. Start up screen dis
menu items display, SMS display during editing task and action display during sending the |SMS.
Task_ScreenDispl thus extends to four classes Task_StartUpDispl, Task_ SMSDispl, Task_Actio DlSpl
and Task_ MenuTextLinesDispl. N
The ISRs are ISR_WirelessPort, ISR_T_Out_Help_Option, ISR_T_Deacitvate and ISR_KINT.
6. ISR_KINT runs the service functions for any of the state transitions of twenty key and senates
notifications for the state of a key KeylRow1 or KeylRow?2 or , Key2Row1, Key2Row?2, Clto C4,
M1 or M2 or keys 0 to 9.

wn

Class Figure 12.22 shows Task_ MenuTextLinesDispl. It has pixels field of Unsigned byte []. A string is an
array of characters. StrLinel, StrLine2, StrLine3 and StrLine4 are the strings in the object of Menultemss. The
colour fields are textLineColor, cursorTextLineColor, screenBackgroundColor. The cursor has two fields ‘line
and a coloured bar. The methods are OSMBoxAccept (); OSMBoxPend(); OSMBoxPost() and mouseCHick ().

Examples and Case Studies of Program Modeling and Programming with RTOS-2

|__ISR_KINT | [1SR_T Deacitvate | [ISR_T_Out_Help_Option |
|| Task AddNumber | —— ISR_WirelessPort |

[Task_AddEmail -

k Task AddList

]._
[Task_EditMessage]——
}__

E Task_ListRecipient
E Task_ Send

Task_SMS_CreateTextSend Orchestrator_SMSCreateSend

l Task_StartUpDispl l

L Task_ SMSDispl 1

Task_ MenuTextlLinesDispl]—

Task_ActionDispl L [Task_ScreenDispl

iy

Task_Text

, Task_Messages }———
[Task_TextMessages }—

I Orchestrator_CommandsGUIs |——

Orchestrator_CommandsGUIs

1 Task_CreateMessage

—

ORCHESTRATOR

, Orchestrator_SMSCreateSend 1—

Fig. 12.21 ORCHESTRATOR, Task_SMS_CreateTextSend and Task_ScreenDispl class diagrams of
SMS create and send application °

Task_ MenuTextLinesDispl

Unsigned byte []: pixels

String: char [];

String: Menultems;

Menultems: StrLine1, StrLine2, StrLine3, StrLine4,
Color: textLineColor, cursorTextLineColor,
screenBackgroundColor

Cursor: line, coloredBar

OSMBoxAccept ();
OSMBoxPend();
OSMBoxPost();
mouseClick ();

Fig. 12.22 Class Task_ MenuTextLinesDispl

Objedts Message queue objects are used for posting to the ISRs and tasks. Message queue objects are
accepted or waited for at the tasks. For example, MsgMessages, MsgTextMessages, MsgCreate and MsgText
are pogted on KeyIRow!1 interrupts. Event objects are posted on a set of notifications. For example, E_SMS
is posted on MsgMessages, MsgTextMessages, MsgCreate and MsgText. E_NewState is posted on any new
state generation on interrupt from any key in the mobile. [Figure 12.20]

| 610

12.5.3 State Diagram

Figure 12.23 shows a state diagram for task_SMS_CreateTextSend. A state diagram shows a model of a stfucture
for its start, end, in-between associations through the transitions and shows events-labels (or conditions) with
associated transitions. A dark rectangular mark within a circle shows the end. The state transitions take place
between the tasks, task_ SMS_CreateTextSend and task_AddNumber, task_AddEmail, task_AddList,
task_EditMessage, task_ListRecipient and task_ Send. A state transition occurs after notification of
MsgAddNumber, MsgAddEmail, MsgAddList, MsgEditMessage, MsgListRecipient and MsgSend on selection
of menultems Add Number, Add Email, Add List, Edit Message, List Recipient and Send, respectively. Task_Send
posts the event to initiate ISR_WirelessPorts through Orchestrator to send SMS and end the applicati

12.5.4 SMS Keying Hardware

Hardware architecture specifies the appropriate decomposition of hardware into processors, ASIPs, keys,
memory, ports and devices It also specifies interfacing and mapping of these components. Specificatipns for
SMS keying-in hardware are as follows:

Cursor key One four-way cursor key, which is pressed to move the cursor up, down or left or gight of
character when editing the SMS when it is being created. The actions are similar to T.!, < and > kdysina
keyboard. On cursor-key interrupt on click, the notifications are sent for the states Clkey, C2key, C3Key and
C4key and current cursor display-position.

[jr !

E_SMS

, Y
Orchestrator [task_SMS_CreateTextSend

False

MsgAdd

MsgSend
False Number

True True

MsgText

task_EditMessage task_AddNumber task_Send
StateKey1Row1 ¢ StateKey1Row1 ¢
MsgListRecipient | MsgAddList | MsgAddEMail |
Task_ListRecipient Task_AddList Task_ AddEmail

1 1 !

Y StateKey1Row1 = (1, options) or (1, select) R

Fig. 12.23 State diagram for task_SMS_CreateTextSend

A

Command keys Four number command keys, keylrow1, key2row?2, key Irow2 and key2row? are present.
Use of Key1Row1 and Key2Row1 is similar to the left and right clicks in a computer-mouse for GUIs{ Use of

b

Key]l
respd

O
their

T9

Examples and Case Studies of Program Modeling and Programming with RTOS-2

Row?2 and Key2Row?2 clicks is similar to click to starr menu item and turn-off or restart menu item,
ctively, in a computer start up window.
h clicking a command-key, command-key interrupt routine sends notifications for the commands and
options. The keys are used as follows:
. 3

Right corner-second row command key (for key2row2 interrupt) is marked red with phone head down
sign. It is used to activate the idle device and show start-up display. The same k.y is also used to
switch off an active operation (including a phone call at any instant).

. Left-corner-second row key (for key lrow2 interrupt) is marked green with phone head lifted sign. It

is used to dial the number, which is in view on screen or selected using cursor from viewed number (s)
in the screen-menu. The same key is also used to receive an incoming call, after a ring tone is played
and the number flashes on the screen.

. Left-corner-first row key (for keylrow! interrupt) is marked green with dash sign and is used to

activate all the available options, menus and submenus for starting an application. This key action is
similar to left click mice button when the cursor is at a Window for selecting a command from the set
of options, buttons and menus.

. Right-corner-first row key (for key2row! interrupt) is marked green with dash sign and is used to

activate o select the menu commands, and is additionally used or to clear the keyed character during
editing process or to go back to previous menu options. For example, the key is used for Conracts,
Calculator, Create message and Game or the programmed options for their start. It opens for selecting
a command from a limited set of displayed menu options. This key action is similar to action on right
click of computer-mouse button when cursor is over a button or at a screen position.

eys T9 keypad is used for keying in of SMS. T9 keypad has nine keys 1 to 9 plus a key0. T9 key

(keyl,..., key9 key) inputs are used for dialling numbers as well as editing the text inputs during SMS create
application.

Mode Keys Two keys marked * and # key modify the states of keyM1 and keyM2 when they are pressed.
Modk Key use can be understood by the following example. For example, to protect accidental use of the keys
when phone is kept in the pocket, the keylrowl and M1 are simultaneously pressed, the pad undergoes
transition to lock state if previously it was in the unlock state and to unlock state if it was in lock state. Another
exampple is bilingual or multilingual text SMS editing. M2 is used to convert the English text mode to other
langpage text mode.

Display Screen Screen displays the GUIS for start up display, menus, options, text being edited or actions

curr

ntly taking place.

12.5.5 SMS Create and Send Application Software Architecture

Software architecture specifies the appropriate decomposition of software into modules, components,
apprppriate protection strategies and mapping of software. Software architecture consists of the following in

the §

MS create and send application.
. OS. [OS controls the OSMsgQAccept, OSMsgQPost and OSMsgQPend message queue functions at

message boxes and event functions at the even boxes. OS synchronizes the tasks and facilitates
concurrent processing of SMS application on the mobile].

Key-system layer using Orchestrator and ISR_KINTSs (interrupt service routines on interrupts from
the keys)

Application layer

Embedded Sy

Application layer has
1.
2. ISRs for initiating action on user inputs and GUI notifications

Tasks as shown in Figure 12.21

(1) Key-system layer: A layer in software architecture is used for the key-system. Figure 12.24 shows
a key-system layer. A key click generates an interrupt and a service routine ISR_KINT, which then exetutes
an Orchestrator. The ISR_KINT reads the port status bits to find which key has been clicked, and also tq read
the timer status and timer counts and cursor position and that position menu or text message. It signals the
Orchestrator to initiate and generates the notifications and events and posts these into the message boxep and

event boxes for waiting tasks. For example, ISR_KINT initiated Orchestrator posts the following mes:
1.
2.
3.

Fig. 12.24 Key-system layer with ISR_KINT and Orchestrator in software architecture of mgbile

4.
5. S_Key0, S_Keyl, S_Key?2,, or S_Key?9 state as per the timer status and counts if there is new|

~

10.

MsgMessages when cursor on display screen points to a Command_Msg Messages.

MsgCreate when cursor on display screen points to an application-option_Msg point to Create, [S
displays the application options Create message, Inbox, Sent items, Archive, Templates, My fo
Distribution lists, Delete messages and Message settings options].

1

interrupt

MsgTextMessages when cursor on display screen points to a command_option_Msg TextMeSS}jes.

i Cursor key

: -~ q interrupt
Ev;r;tﬁ gox 1 Orchestrator T9 key interrupt
Ev::;tw bgt); tel S — <—| Key0 interrupt

21: Mode key interrupt |
<—{ Cursor Message box |

| Timer Message box |

MsgTextType when cursor on display screen points to a type_option_Msg Text.

of key0, keyl, key?2, .. key9

S_C1,S_C2,S_C3, 0or S_C4 state if C1 or C2 or C3 or C4 is clicked.

S_M1 or S_M2 if M1 or M2 is clicked.

S_keylRowl, S_keylRow2, S_keylRow?2 or S_key2Row2 S_key1Rowlif a command key is prs
is clicked.

E_SMS if command, command option, application option and type options MsgMess
MsgTextmessages, MsgCreate and MsgTextType were posted in steps 1, 2, 3 and 4. [MsgMess
MsgTextMessages, MsgCreate and MsgTextType initiates event object E_SMS.]

E_NewsState if any state change step 5 or 6 or 7 or 8.

(2) Application layer is a layer in software architecture.

1.

An application task is object of class Task_ MenuTextLinesDispl. It executes on posting of a mes

ges:

reen
ers,

state

bssed

ges,
ges,

sage-

object MsgTextMessages or MsgMessages or MsgTextMessages, MsgCreate or MsgTextType into a

message box by an ISR_KINT (Fig. 12.24) on E_NewState.
Another application task is Task_SMS_CreateTextSend for SMS create and send application 3
executes on event E_SMS. State diagram of it was shown in Figure 12.23 Section 12.5.3.

Ind it

%Examples and Case Studies of Program Modeling and Programming with RTOS-2

12.5.6 Software Tasks and Synchronization Model

Figure 12.23 showed the state diagram of synchronizing cycle of different tasks. The SMS communication
system|has a cycle of actions and tasks synchronizing model. Orchestrator posts notifications to the
task_MEssages, task_TextMessages, task_CreateMessage and task_Text.

1. JA cycle starts in Orchestrator. A task, task_Messages, which receives a notific2tion by message

" B_KeylRowl1 choice of command. It posts MsgMessages.

2. |A task task_TextMessages is for command option. It posts message MsgTextMessages on user selection.
Another task task_CreateMessage accepts MsgTextMessages and posts MsgCreate on user selection.
Another task task_Text accepts MsgCreate and posts MsgText on user selection.

Orchestrator then posts E_SMS. On receiving E_SMS the Task_SMS_CreateTextSend signals the
displaying of menu items for initiating task_AddNumber, task_EditMessage and task_Send,
task_AddEmail and task_ListRecipient.
. [Task task_AddNumber adds the message mobile number for sending the SMS in a list. It posts message
MsgAddNumber on user selection.
5. {On user selection, Orchestrator posts message, which signals another task task_EditMessage to
start. It is used for creating and editing the message by keying-in the characters. Orchestrator
~ laccepts state of key on each key click and posts state in the message box of the key clicked during
the editing. task_EditMessage accepts state message of the keys and creates the SMS_Create_Text string.
6. |On user selection, Orchestrator posts message, which signals another task task_Send.
7. [Task_Send posts MsgSend. Orchestrator accepts MsgSend and posts MsgCommuncation for
~ |Communication Port Interface. It accepts MsgCommuncation and posts SMS_Create_Text string
. jthrough wireless.
Figyre 12.25 shows a Synchronization model for SMS create and application tasks, ISRs and Orchestrator
tasks ($sk_Addlist, Task_ListRecipient and task_AddEmail synchronization not shown) using the message

hd

~

and event boxes.
Signal
\‘ ISR_KINT g Orchestrator H Message boxes and Event BoxesJ
0:S_Key1 Row1 task_TextMessages H task_CreateMessage }—1
\] task_Messages 3: MsgTextMessages 4: MsgCreate
: 2: MsgM
1:KINT sghiassages l Orchestrator 5: MsgTextType task_Text
9: MngditMessag/e

T
i 7: MsgAddNumber

11: SMS_Create_Text string | task_SMS CreateTextSefﬁl

T

|

|
j task_Send 1 l task_EditMessagi‘ I ;

|

i
; task_AddNumber—l 6: E_SMS
12: MsgSend 10: State of a ke o
9 y | 8: State of a key task _AddEmail
13: MsgCommuncation\J Communication Port Interface] task_ListRecipient 1
B ISR_WirelessPort ~_¢SMS ,
| task_Addiist }

14: SMS_Crea/te_Text string

Fig. 12.25 Synchronization model for SMS create and application tasks, ISRs and Orchestrator
tasks (task_Addlist, Task_ListRecipient and task_AddEmail synchronization not shown)

The following is a summary of this chapter

Adaptive Algorithm : An algorithm that adjusts and adapts to the parameters and limits the ckm ing

Adaptive Control : A control system that uses an adaptive algorithm to generate output control
Adaptive Cruise Control : Anautomobile throttle control system to maintain constant preset cnusmg

@ Summa;)'/

Four case studies are explained: system design for the robot orchestra, automatic cruise control syste smart
card and mobile phone SMS create and send application. The system design by software engineering and UML
modeling approaches are explained in these case studies. j
Class diagrams, classes, state diagram, synchronization model, hardware architecture and software arc -=
are described using examples. - '
Robot orchestra example explains the synchronization of MIDI messages between conductor and play
Orchestrator is: software which sequences, synchronizes the inputs from 1% to k™ sensors or other sourk S§and
generates messages, notifications, signals and outputs for the actuators, display and message boxes at spécified
instances and time intervals after an input change. Message boxes store the notifications, that initiate th tdsks.
Application of Orchestrator is explained by taking examples of the robot orchestra and mobile phone SM cxkate
and send application. %
There are many automobile electronics applications of embedded systems and the important ones were sumiatized
here. A feature in modern cars, automobile cruise control system, was described. The adaptive control sy " is
defined. Due to the greater need of reliability from the point of view of human safety, the need for special feg in
OS for automobiles was explained. MISRA-C standard for C language software defines the guidelines for autiqn dtive
systems for usmg C. MISRA-C version 2 (2004) specifies 141 rules for coding and gave a new structure &y €. A
standard RTOS is OSEK-OS for automotive electronics. Automotive cruise control system code design fs given
using the VxWorks after retaining and incorporating the OSEK-OS features with it during the exemplary cting.
Embedded system design for card-host communication in a smart card is given to explain special erbledded
hardware and special RTOS functions needs. The case study showed that for developing codes for an end .' ded
system, the RTOS MUCOS or VxWorks functions might not suffice. A hypothetical RTOS, SmartOS, wi s has

MUCOS features plus the embedded system special OS functions when it requires cryptographic featd$siand
file security, access conditions and restricted access permissions. After an initialization task that execitfes on
system booting, three tasks are scheduled by the SmartOS. (a) A task reads the application strings from th card
data files. It sends, after encryption, the messages to UART. It receives the encrypted strings from the U RT of
the host. This example also shows how multiple functions can be handled by the same task to reduce the #inlory
needs. It is a desired feature in the smart card case. There is only 8 kB in most cases and 64 kB in extreme| ises
The task for the password as well applications interacts through the IPCs. In the end, after seeking host authorigagion,
the tasks are deleted. (b) A task sends the password request from the user interacting with the host. (c) 0 , iask
gets the commands for executing the desired application routines and user data from the host. £
Embedded system design for SMS message creation and communication is described. The example expl e d the
uses of command keys, cursor keys and GUIs in mobile phone SMS create and send applications. It is show r.hat

the concept of Orchestrator, used in robot applications, is also useful for mobile phone applications. §

Keywords and their Definitions T

perturbations in a control system.

Des&;ixamples and Case Studies of Program Modeling and Programming with RTOS-2

Blsegpth

gmgz:*—wy 9

M, i ‘
* (muswal instruments
w:face)

-2

: A protocol used in mobile devices with features of service discovery, self-

organizing network, self-establishing and self-configuring network, emulation
of COM port of PC and other features and is used for data synchronization and
communication between the devices within a piconet or scatternet.

: A combination of diode and capacitor to extract and store charge for providing

a supply to the system using an appropriate voltage regulator circuit.

: A port in PC, which is used for connecting to mice or modem and which has 9

or 25 pin RS232C standard serial or parallel connector and which uses data and
handshaking signals standard specified by UART. Emulation means sending
the RxD (received data) and TxD (transmitted) data in same format by another
protocol as in 11-bit UART (one start bit, 8 data bits, parity or programmable bit
and stop bit).(Section 3.2)

: Akey used to select menu item options to start a new task or action.
: Software for encrypting and deciphering a message or a set of byte streams. It

uses an algorithm for encrypting and another algorithm for decrypting.

: A line or symbol or icon displayed on the screen to guide a user to select the

button or text shown at that position.

A key, when pressed towards left moves a cursor to the left, right moves the

cursor to the right, and so also up and down.

: A system to acquire data from multiple ports and channels.
: An instance of presence of a notification or message or set of messages or

action(s) that initiates an ISR. There is reset of the notification on start of ISR to
enable response to next event.

: Akey embedded in ROM at the time of card fabrication so that the card gets an

unique identity.

: A system for determining locations, speed, direction and time by a receiver. A

set of 24 or more medium earth orbit satellites beams the signals to enable a
GPS receiver. The receiver is positioned at any place on globe to receive signals
for determining these four parameters.

: A lock, which, if placed in the application data files in the card, makes the card

invalid for further use.

: A Java language format for smart card applications.
: The supervisory codes that execute the Java classes compiled as byte codes by

the Java compiler. The codes run with the help of JVM in a computer system.

: A memory address used for an instruction or data byte of the RTOS or application,
: A mailbox in which notification(s) are placed by a task and another task accepts

the message or waits for the message.

: A protocol to define the specification required for hardware interfaces, message

formats and for sending the program change, system and channel messages.
The channel messages define the musical note, pitch-bend, control change,
program change and after-touch (poly-pressure) messages.

: A message generated on listening to clicking a key or on a change of state of a key

or clicking of a button or selection.of a menu item. Notification is for another task.

: A musical event played using several musical instruments, each with a player

and conducted by a conductor.

: Software, which sequences and synchronizes the inputs from the 1% to the k'

source and generates the messages and outputs for the actuators, display and
message boxes at the specified instances and time intervals. Message boxes
store the notifications that initiate the events and tasks as per the notifications.

Personalisation Key

Physical address

Piconet
PIN

Protection Bit
Qrio

Radar (Radio Detection
and Ranging)
RSA

Scatternet

SHA

String Stability of Vehicles

T9 Keypad

Throttle Valve
Unblocking PIN

: Personal Identification number. Bank or hosting service allocates thxs |

: ' A system that uses radio waves of below 1 m to enable ranging of shox&tant
it

;- An algorithm that uses the prime numbers. RSA stands for the first ptis of
1 A network within 100 m between various piconets connected th y ?h a

: A Security Hash Algorithm based on a hashing function.
: A state of parameters that results after an input and that depends upon the T

: A keypad that includes nine T9 keys for nine numbers 1 to 9 as w<T

: A valve to control the engine thrust and hence acceleration.
: A host PIN used for unblocking a certain part of the card memory for

allocation unit has its own PIN, called host PIN.

: A bit at the ROM that the processor uses for not letting the tra .. f¢r of

instructions and data in the protected part to the system external bugds,| The
pmoessor extemally blocks the write cycles for accessing these protected a ; gre

had one hour battery. A set of the Qrios also played the orchestra ar
numbers.

objects by measuring time delay between trasmitted signal and

signal.

the last names of its three inventors; Ron Rivest, Adi Shamir, Ekonard
Adleman. 3

Bluetooth-enabled bridging device and formed by self dlscovery
organizing features of the Bluetooth protocol.

|

sequences of states which occurred since starting from initial state. For eXay
a counter has a different state after a count input and its state depen i
previous number of inputs. State can also depend on time if time-out in
used as state-transition input. A key has on-off states or if clicked one, ty
times then multiple states. For example the states of the T9 keys. :

: Stability by maintaining constant distance between multiple streamin el

in a convoy on highway or VIP duty.

alphabets a to z (or A to Z). Entered alphanumeric text in smail
capital case is per the as per a mode-key state. Text character depends oﬁ ‘
the T9 key.

example, for permitting a modification of the user password after un}
(permitting access by modifying the access condition fields) passwo

le in
the memory. ‘

15.

16.

18.
19.
20.
2L

22,
23,
24,
25.

2

VW N

Examples and Case Studies of Program Modeling and Programming with RTOS-2 617

Review Questions

How are the MIDI messages used for conducting an orchestra? Give specific examples.

List the tasks required for MIDI file communication using Bluetooth piconet between the players and conductor
robots. Explain task priority assignments in robot orchestra MIDI messages communication.

List the embedded devices in a high-end car.

‘What is adaptive control? How does adaptive control algorithm difffer from feedback proportional control.

List the tasks and ISRs required for ACC system. Explain the actions of each. Explain task priority assignments in
an ACC system.

. {What should be features in OS for automobile applications? Why should a MISRA-C version of C be used in ACC

tasks?
‘What are the Bluetooth device piconet and scatternet ranges? Discuss the advantages and disadvantages of Bluetooth
based inter car communication in place or radar- or laser-based communication?

. |Why is Java popular for smart card applications?

. {How does a contactless smart card hardware derive power?
10.
11.
12.
13.
14.

Why is the use of a processor with memory protection bit essential?

What is the advantage of encryption when using a fabrication key, personalization key, utilization liock and PIN?
Tabulate the features needed in the OS for a smart card.

Explain how the task of reading ports in smart card synchronizes with the port device driver.

List the tasks and ISRs required for a smart card system. Explain the actions of each. Explain task priority assignments
in a smart system.

List the tasks and ISRs required for mobile phone SMS create and send application. Explain the actions of each.
Explain task priority assignments in an SMS create and send application of mobile phone.

We can use a number of mailbox IPC messages from a task in a mobile phone. Explain how this has been effectively
used. Why is the use of mailboxes option followed in place of message queue in a mobile phone SMS create and
send application?

Practice Exercises

What are the list of tasks for dancing robots.

Give the list of tasks for the ACC with string stability among 4 cars. .

List classes for host of smart card used in the Bank ATM.

Draw Class diagrams of SMS Inbox messages read application.

'Write the sequences and state diagrams of key pressing event in T9 keys. Assume that keyS has state sequences s
on transitions from idle state (0, 5) (1, 5), (1, j), (1, k), (1, 1), (1, 5), (1, j), (1, k), (1, 1), (1, 5), till within an interval
At user does not repeat pressing of key5 or presses another key in state (0, n) where n is any other T9 key. What will
be the state sequences for keyl, key2, key3, key4, key6, key7, key8 and key9.

List the classes that extend the Task_ScreenDispl in a mobile phone.

Give a synchronization model for editing and string creation using Task_EditMessage during creating an SMS
message.

Design the codes for SMS text editing using Task_EditMessage.

List classes that will be used for start up display, display off after 15s and pop-ups a help-display if cursor stays at
a menu item for more than 2s.

Embedded Software
Development Process
and Tools

Recall chapter 1 afresh. We defined an embedded

system as one that has software embedded into a
e computer hardware. Embedded system has three main

components.

e Hardware

e Main application software. Application software

c perform multiple tasks
e RTOS

In the previous chapters, we have learnt all the three

main components of embedded systems and have

a covered following topics.

e Embedded system hardware consisting of processor,
memory, devices and basic hardware units — power
supply, clock circuit and reset circuit.

[e Devices consisting of I/0 ports to access the
peripheral and other on-chip or off-chip physical-
devices. Physical-device examples are UART,
modem, transceiver, timer-counter, keypad,

[keyboard, LED display, LCD display, DAC, ADC
and pulse-dialer.

QW &

L R R~ 00N S ® O

b e

ik e

@ 2~ 2R

2

e Real-time clock-driven software timers.

e Virtual devices (pipe, socket, file, etc).

¢ Device drivers and interrupt-handling mechanism in an embedded
system.

o Need for power dissipation management by the processor
instructions during high-speed computations.

e Selection of appropriate processor, memory and devices for
optimum system performance.

o Interfacing of system buses with the memory and I/O devices,
and use of DMA controller to improve system performance by
enabling the I/O units to have direct access to system memory.

e High-level lahguage programming concepts, program models
and software-engineering approaches.

e RTOS, use of IPCs, exemplary uses of RTOS MUCOS (LC/OS-
II) and VxWorks functions, and study of MUCOS, VxWorks,
Windows CE, OSEK and Real Time Linux programming
environments and their applications.

Chapters between 5 and 12 focussed on software aspects. In this chapter, we focus on
hardware and software integration aspect. We will learn the following for
understanding embedded development process and tools.

1. Software, source code engineering and integrated development environment

(IDE) tools.

2. Software is developed on a host machine, say, a personal computer for a
target system, which in most cases uses distinct processor and OS. There are
two development platforms: host and target machines.

Linking and locator to create file for binary image for the final software.

4. Device programmer to burn the codes in the PROM or flash bugging of system
monitor codes in ROM.

5. Issues in embedded system development that need to be addressed by any
development team. These are independent software-hardware design,
hardware-software co-design, choosing right processor, allocation of memory
addresses, devices and bus and porting issues of OS/RTOS.

Chapter 14 will describe testing and debugging.

“w

~13.1" INTRODUCTION TO EMBEDDED SOFTWARE DEVELOPMENT
PROCESS AND TOOLS

13.1.1 Development Process and Hardware-Software

Figure 13.1(a) shows the development process of an embedded system and Figure 13.1(b) edit-test-debug cycle
during implementation phase of the development process. There are cycles of editing-testing-debugging during
the development phases. Whereas the processor part once chosen remains fixed, the application software codes
have to be perfected by a number of runs and tests. Whereas the cost of the processor is quite small, the gost of

developing a final targeted system is quite high and needs a larger time frame than the hardware circuit d

Development Phase
|

I
Hardware
Selection Software
I
.| Assembly Burn Codes
for Target System using Device Dovel)
velop using
1 Progra mmer Edit - Test -
Test Hardware Debug Cycles
Till Test
Resuits O.K.
Reassemble Redesign
On Hardware Yes on Software Errors
Error End
(a)
Approaches During
Edit-Test-Debug Cycle
|
l I i | I
Using a Using an Emulator Using Target Using a Simulator Using IDE
Target System for Target System Processor and ICE for Hardware Prototyping

(b)

sign.

or
Tool

Fig. 13.1 (a) Development process of an embedded system (b) Edit-test-debug cycle during the
implementation phase of the development process

The developer uses four main approaches to the edit-test-debug cycles.
1. An IDE or prototype tool (Refer to Section 13.1.4).
2. A simulator without any hardware (Refer to Section 14.2).

3. Processor only at the target system and uses an in-between ICE (in-circuit-emulator) (R

Section 14.3.6).
4. Target system at the last stage.

13.1.2 Software Tools

The tools are required for the application software high-level language programming. Also required
RTOS, testing debugging, assembly language programming (for implementing the device-driver fun|

efer to

are the
ctions)

H

Err:l*édded Software Development Process and Tools EQI

and system integration tools. Table 13.1 lists the software tools in software and hardware implementation for
embeflded system.

Table 13.1 Software Modules and Tools for implementation of an Embedded System

Software Tools Application

Development kit Development kit is used for editing, configuring (disabling and enabling the C++ features),
‘ GUIs development and compiling.

Soufce-code Source code engineering tool is used for editing, configuring (e.g., disabling and enabling the

engipeering C++ features), GUIs development and compiling as well as for source code comprehension,

sdftyare navigation and browsing, and debugging (Section 13.1.3).

RTQS An operating system (OS) for multitasking, process, memory, IO, network, devices, file system

and for real-time control of processes.

Inteprated Software and hardware environment that consists of simulators, editors, compilers,

development assemblers, RTOS, debuggers, stethoscope, tracer, emulators, logic analysers, application

environment codes’ burners for the integrated development of a system (Section 13.1.1).

Progotyper For simulating, source code engineering including compiling, debugging and navigating through

the codes using a browser, summarizing complete status of final target system during the
development phase. Tornado prototyper from WindRiver® for integrated cross-development
environment with a set of tools (Section 14.2.4).

Compiler For using the complete set of the codes, functions, expressions and library routines and creating
a file called object file.
Assembler For translating the assembly mnemonics into binary opcodes (instructions), that is, into

an executable file, called binary file. It also creates a list file that can be printed. The list
file has address, source code (assembly language mnemonic) and hexadecimal object
codes. The file has addresses which are allocated again during the actual run of assembly
language program.

CroFs-assembler For converting object codes or executable codes for a processor at development system to
other codes for another processor for embedded system and vice versa.

Cross-compiler For compiling source codes for a another processor and vice versa.

Testing and Simulator for simulating most functions of a target embedded system circuit including additional

debngging tools memory, peripherals and buses on the host system itself (Section 14.2.3); stethoscope for

dynamically tracking the changes in any program variable; trace scope for tracing the changes
in the modules and tasks as a function of time on the X-axis; memoscope for memory usage
which is a critical aspect of an embedded system; ScopeProfile to find in which task the CPU
spends how many of its cycles in order to understand performance bottlenecks; in-eircuit emulator
(Section 14.3.6); monitor (Section 14.3.7).

Logator Uses cross-assembler output and a memory allocation map and provides the locator-program’s
output (Section 13.3).

Editor For writing C codes or assembly mnemonics using the keyboard of host system (PC) for entering
the program. Allows the entry, addition, deletion, insertion appending previously written lines
or files, merging record and files at the specific positions. Creates a source file that stores the
edited file. That has an appropriate name.

Intgrpreter For expression-by-expression (line-by-line) translation to the machine executable codes.

622 | Embedded Sys

Software tools are used to develop software for designing an embedded system. Sophisticated tools—Inte phibd
development environment and prototype development tools—are needed for integrated developmenjt bf
~ system software and hardware. The testing and debugging tools are needed for testing and debuggmg

13.1.3 Source Code Engineering Tool

A source code engineering tool is of great help for source code development, compiling and cross-comg
The tools are commercially available for embedded C/C++ code engineering, testing and debugging.
The features of a typical tool are comprehension, navigation and browsing, editing, debugging, confi

(disabling and enabling the C++ features) and compiling. A tool for C and C++ is SNiFF+. It is from Win
Systems. A version, SNiFF+ PRO has full SNiFF+ code as well as debug module. Main features of the tool
are as follows:
It searches and lists the definitions, symbols, hierarchy of the classes and class inheritance frees.

1.

NNk

8.
9.

10.
11.
12.

The embedded software programmer for sophisticated applications uses a source code engineering tooﬂ f?r
program coding, profiling, testing and debugging of embedded system software.

13.1.4 Integrated Development Environment (IDE)

[The symbols include the class members. A tree is a data structure. A data structure tree has
From the roots, the branches emerge and from the branches more branches emerge. On the bray
finally there are the leaves (terminating nodes).]
It searches and lists the dependencies of symbols and defined symbols, variables, functions (met]
and other symbols.

It monitors, enables and disables the implementation virtual functions. Use of virtual functions
dynamic run-time binding.

It finds the complete effect of any code change on the source code.

It searches and lists the dependencies and hierarchy of the included header files.

It navigates to and fro between the implementation and symbol declaration.

It navigates to and fro between the over-ridden and over-riding methods. (Overriding method is a m
in a daughter class with the same name and number and types of arguments as in the parent class. {
ridden method is the method of the parent class, which has been redefined at the daughter class.)
It browses through information regarding instantiation (object creation) of a class.

It browses through the encapsulation of variables among the members and browses through the p
private and protected visibility of the members.

It browses through object component relationships.

It automatically removes error-prone and unused tasks.

It provides easy and automated search and replacement.

»E‘

iling.

ring
iver®

root.
ches,

hods)

is for

ethod
Dver-

hblic,

i
!

IDE consists of simulators with editors, compilers, assemblers, etc., emulators, logic analysers and EPROM/

EEPROM application codes burner. An IDE must have the following features.
1.

2. It has the facility of a user-definable assembler to support a new version or type of proces:

It has a facility for defining a processor family as well as defining its version. It has source
engineering tools (Section 13.1.3) which incorporate the editor, compiler for C, embedded
assembler, linker, locator, logic analyser, stethoscope and ‘Help’.

provides a multiuser environment.

code
Ct+,

jon. It

bl

ed Software Development Process and Tools 623

The design process divides into number of subparts. Each programmer is assigned independent but
linked tasks.

4 Itsimulates hardware unit-like emulator, peripherals and I/O devices on a host system (PC). It supports

conditional and unconditional breakpoints. It provides test-vectors. A test-vector is program-path for
the controlled flow of the program used duing testing phase and later removed or disabled on completing
that phase.

It debugs by single stepping. It has the facility for synchronizing the internal peripherals.

It provides Windows on the screen. These provide the detailed information of the source code part with
labels and symbolic arguments, the registers as the execution continues, the detailed information of the
status of peripheral devices, status of RAM and ports, and the status of stack and program flow as it
continues.

It verifies the performance of a target system. It has an emulator built into the development system that
remains independent of a particular targeted system, plus a logic analyser for up to 256 or 512
transactions on the address and data buses after triggering.

An/IDE tool is from WindRiver® Systems and that employs VxWorks RTOS (Section 9.3). An architectural

feature

is “dynamic linking and incrementally loading the object modules’ into the target system. Exemplary

target processor families that are supported are PowerPC, Intel, Motorola, Pentiums, MIPS and ARM/Strong
ARM. It helps in prototype development and tests the prototype applications. There is a text editor with GNU

C/IC++

compilers. Debugging is performed at three levels, source code-level, task-level (scheduling, IPCs

and inferrupts study) and domain-level. It includes VxSim, stethoscope and tracescope. Figure 13.2(a) and (b)
show simple and sophisticated IDE, respectively.

An|IDE (uVision_2) is from keil software Inc. with RTX51 RTOS for 8051 target processor families.
Anothgr IDE keil uVision_3 is for ARM family of processors and microcontrollers. It has cross-compiler,
source-level debugger, object browser, monitor for run-time behaviour, event-to-event viewing. The object
browspr browses the applications behaviour overtime. It graphically displays the RTOS tasks, queues,
semaphores and IPC objects. A real-time analysis (RTA) suite profiles the code coverage and locates run-time
errors, It optimizes the use of the memory.

target

HOST AND TARGET MACHINES

the development process, a host system is used before locating and burning the codes in the
ard. The target board hardware and software is later copied to get the final embedded system, which will

functign exactly as the one tested and debugged and finalized during the development process.

13.2/1 Using a Host System

Host system is a PC or workstation or laptop. It has the following hardwares.

PN BN~

High-performance processor with caches

Large RAM memory

ROMBIOS (read only memory basic input-output system)
Very large memory on disk

Keyboard

Display monitor

Mice

Network connection

624 Embedded Sy#ms

It a full-fledged computer. It has software tools l - -
(Table 13.1) and must include the following: smuator | [ceagtor |
1. Program development kit for a high-level
language program or IDE. (Emulator J l RTOS l

2. Host processor compiler and cross-
compiler.
3. Cross-assembler.

i Logic Analyzer J ‘ Cross-Assemblerl

Target System Test Vectors
Performance

Evaluator

Program Development Tool Kit Program

development tool kit or IDE has an editor. The
editor is used for writing C codes or assembly

IDE for Various types and Versions of Microcontroller
with Upgradability of IDE for future Versions.

mnemonics or C++ or Java or Visual C++ using (a)

the keyboard of the host system (PC) for entering IDE with RTOS

the program. Using GUISs, it allows the entry, and Network - Multiple Users

addition, deletion, insert, appending previously Interface and (Designers) and
. . . Protocol Support Programmers !

written lines or files, merging record and files at

the specific positions. It creates a source file that (b)
stores the edited file. It also has an appropriate Fig. 13.2 (a) Simple integrated development
name (given by the programmer). It can use environment (IDE) (b) Sophisticated|IDE
previously created files and can also integrate the
various source files. It can save different versions of the source files. Program development kit or IDE has the
code generation tools (assembler, compiler, loader and linker).
A high-level language is machine-independent. It will have an expression like X = X + 23, or X £ 2%¥Y
+V*Z + 19 and so on. When we use a high-level language C, a tool is needed for obtaining the maching codes
for a target system. The programmer writes the mnemonics or C program, using the editor. The mige and
keyboard combinations of the host system (PC) or host system are for entering the program codes Each
language needs a compiler. The codes may not be executable using an interpreter.

1. An interpreter does expression-by-expression (line-by-line) translation to the machine-executable|codes.

2. A compiler uses the complete set of the expressions. It may also include the expressions from the
library routines; that is, standard tailor-made programs. Whereas an interpreter helps in on-line exgcution
of the codes, a compiler helps in the off-line programming for obtaining the executable maching codes
later. The C programs are used with an interpreter as well as with a compiler. A cross-compiler is a
compiler that created binary executable files for the target system processor. :

3. An assembly language program has the mnemonics that are machine-dependent. Example of a
mnemonic is SBC A, 0x0B. It means an instruction, which subtracts, along with the previous arry’,
the A register of the processor with the hexadecimal number 0xOB. An assembly mnemonic is specific
to a processor or microcontroller. It is according to the instructions provided in the instruction set, The
assembly mnemonics needs an interpreter to translate into the machine codes that are executgd on a
specific processing device. ,

4. A dissembler translates the object codes into the mnemonics form of assembly language. It helps in
understanding the previously made object codes.

5. An assembler is a program that translates the assembly mnemonics into the binary opc esl and
instructions, that is, into an executable file, called object file. It also creates a list file that|can be
printed. The list file has address, source code (assembly language mnemonic) and object ¢ des in
hexadecimal. The object file has addresses that are to be allocated again during actual run of the
assembly language program. A loader is a program that helps in this task by reallocating addresses
before loading the opcode and operands in the computer memory. ‘

Software Development Process and Tools

| A linker links the needed object code files and library code files. This is before the loader reallocates

the addresses, and puts the codes at the physical addresses in the memory, and the program runs.
Loader performs the analogous functions on host machine as the locator does on a target system in
conjunction with a device programmer.

Cross-Compiler C or C++ or visual C++ source files compile according to the native platform (system

13.2}

ing OS on which their binary image runs). Java classes compile as byte codes and are therefore platform-

ysetm using simulators and number of latest software tools like profiler, memory scope, stethoscope
mory and code coverage scope.

2 Target System

A target system has a processor, ROM memory for ROM image of the embedded software, RAM for
stack, femporary variables and memory buffers, peripherals and interfaces. Figure 13.3(a) and (b) show simple
and sophisticated target systems, respectively. Some target systems have 8 or 16 MB flash memory and 64 MB
SDRAM. A target system may possess the RS$232 as well as 10/100-base Ethernet connectivity or USB port.

P For software test and debug

Target System s

Monitor :{ Target system Keypad '
Flash-

8951 Memory :l Target system Display I

micro- PC
RAM RS232C or

controller Port USB oort

R23zs2c | OO0 PO

Interfaces — or USB

Development host

(@
Sophisticated Target System
Monitor

ARM RAM SDIO, PC
CORTEX- Flash- USB,
M3 SPI,
Micro- Memory | | MM card, D
controlier Port
Core APB Interfaces Development host

{b)
Fig. 13.3 (a) Simple target system (b) Sophisticated target system

Embedded Sys

A target system differs from a final system. It interfaces with the computer as well works as a standalone
system. There might be repeated downloading of the codes into it during the development phase. The farget
system or its copies simply work later as the embedded system.

Consider that a targeted system is under development. In the target system development phase, say of a
router, the codes of application software have to be written. These have to be embedded in flash. Thesg¢ have
to be repeatedly written or modified and tested using diagnostic, simulation and debugging tools, and embgdded
till a final testing in an edit-test-debug cycle shows it working according to specifications. The programmer
later on simply copies it into the final system or product. Also a final system may use a ROM in place of flash
in the target system.

An exemplary target system is a board that has an Philips LPC21xx processor (ARM microcontroller). It is
MC2100 evaluation board from keil.

Let us consider an exemplary sophisticated target system, VxWorks 5.4. It provides run-time suppprt by
scaleable RTOS support, Internet protocols support, POSIX library support, file system and graphic sugports.
It has a debugging agent. It has a back end support package for a specific processor or microcontrollef. The
target system connects the simulator in parallel the host computer through a target server tool with ICE
(Section 14.3.5) using Ethernet or serial lines from the host computer.

“~ 13.3" LINKING AND LOCATING SOFTWARE

A linker links the compiled codes of application software, object codes from library and OS kernel. Li
necessary because there are number of codes to be linked for the final binary file. For example, t
the standard codes to program a delay task for which there is a reference in the assembly language progr:

address. The assembly software code is also sequential from a certain beginning address. Both the ¢
present at the distinct and the available addresses in the system. A linker links these. The linked file in bin
run on a computer is commonly known as executable file or simply ‘.exe’ file. After linking, there h
reallocation of the sequences of placing the codes before the actual placement of the codes in the memory.
A program is loaded in a computer RAM. The loader program performs the task of reallocating the|codes
after finding the physical memory addresses available at a given instant. The loader is a part of the QS and
places codes into the memory after reading the ‘.exe’ file. This step is necessary because the available mgmory
addresses may not start from 0x0000, and binary codes have to be loaded at the different addresses during the
run. The loader finds the appropriate start address. In a computer, after the loader loads into a section of RAM,
the program is ready to run.
When the code embeds into ROM or flash, a system design process locates these codes as a ROM image.
The codes are permanently placed at the actually available addresses in flash-ROM. In embedded syptems,
there is no separate program to keep track of the available addresses at different times during the run s in a
computer. In embedded systems, therefore next step after linking is the use of a locator for the programicodes
and data in place of the loader. The locator features are as follows.
1. The locator is specified by the programmer the available addresses at the RAM and ROM in Jarget.
The programmer has to define the available addresses to load and create files for permanently

the codes using a device programmer.
2. It uses cross-assembler output, a memory allocation map and provides the locator program outpht file.
1t is the final step of software design process for the embedded system. Locator program outpyt is in
the Intel hex file or Motorola S-record format. The locator uses the cross-compile codes in different

—

éded Software Development Process and Tools 627

cross-compiled segments for: (i) instructions, (ii) initialized values and addresses, (iii) constant strings
and (iv) un-initialized data.

3.| The locator locates the I/O tasks and hardware device-driver codes at the addresses without reallocation.
This is because the port and device addresses for these are fixed for a given system. These are as per
the interfacing circuit between the system buses and ports or devices.
4.| The locator program reallocates the linked file and creates a file for permanent location of codes in a
* 1 standard format.
5.} The file format may be Motorola S-record format or Intel hex file or any other format (Section 13.3.2).
Fighire 13.4 shows various software tools and chain of actions of linker at host and locator in an embedded
systen).
Host PC
IDE or Program Development kit:
C++ or Java or Visual C++ Editor and GUI tools;
Host processor compiler and cross-compiler; cross-assembler
Source and library Files |
Locator
— e -
Hex Files vice
— i ROM
ROM | vontoter)
[Debugger [Device programmer | > flash
Fig. 18.4 Various software tools and chain of actions of linker at host and locator in an embedded

system

13.3.1 Differences in Files, Addressing and Address Resolution Method

Table {13.2 gives the differences in addressing in linker and locator.
Table 13.2 Differences in Files, Addressing in Linker and Locator
Action Difference
File ¢reation Linker creates linked file for the disk for use by the host system OS and the loader and then

located program directly.

File format Linker file formats are as per the file system used for the disk. Locator file is as per Motorola-
S or Intel hex or any other format (Section 13.3.2).

Addresses Linker addresses are for the host system processor and are relative addresses, which the loader

Addnpss resolution An instruction may have specified address in object file, while actual host or target may be
methpd allocated different address-spaces for calling that object file. Addresses are properly resolved

does the memory address allocation. Locator creates linked file for the use of a device-
programmer, which copies the file at the device EEROM or flash and copied file runs at the

reallocates. Locator addresses are for the target system processor and are addresses, which are
not reallocated later.

in the linker as well as locator. Linker uses relative addresses and actual addresses are allocated
at run time when the OS does the memory allocations and the loader loads the program. Locator
uses addresses, which once allocated remains permanent as the created file records of locator
burns (embeds) into the system.

Embedded Sys

Motorola S-Record Format Motorola S-record format is an industry standard for storing the locatgr file,
before its use by the device programmer or ROM-mask programmer. It is called S-record because it h
character as ‘S’ in each line. A line is as follows: first character is S, second character is 2 (for specifying the fecord
type), third and fourth characters are for a hexadecimal number, say 14 (to specify that there are 20 bytes in that
line), the remaining 40 characters (nibbles) divide as the address (3 bytes) and data (16 bytes) and che¢ksum
(1 byte). Table 13.3 shows a typical S-record as a locator output and device programmer input. It is left as an
exercise to the reader to show that Addr for line 6 in the record of Table 13.3 will be 0x000037.

Intel Hex File Format Intel hex file format is another industry standard for storing the locat¢r file
output, before its use by the device programmer or ROM-mask programmer. A line is as follows: first character
‘2’ (colon), second and third characters for data counts (assume = 10 in hexadecimal in case N, = 16) fin the
line (address bytes, checksum byte and data type bye excluded, only actual data bytes at the line, whichlare to
be burned in ROM are counted), fourth to seventh address (2 bytes), sixth and seventh as 0 and 0 to specify
data as ROM data and the remaining 32 characters as the data (16 bytes) and 2 characters for the che¢ksum
(1 byte). Table 13.4 shows an Intel hex file, which corresponds to the same data as at the Motorola S-fecord
in Table 13.4 as a locator output and device programmer input. It is left as an exercise to the reader to| show
that Addr for line 6 in the record of Table 13.4 will be 0x0037.

Table 13.3 An Exemplary Motorola S-Record format

Rt O
Line First Second Thirdand Address, N, Bytes for Storage in Check-

Number' Character Character’ Fourth Addr? ROM from Addr sum’®

Characters (Maximum value of N, can
for N° be 253 decimal)

0 S 2 1 0 000000 aabb cc dd ee ff xx yy zz bb cc dd csO

1 S 2 0 C 00000C cc aa cc dd ee ff xx yy csl

2 S 2 i 2 000014 dd bb cc dd ee ff xx yy zz bb cc dd aa xx cs2

3 S 2 0 5 000022 0A cs3

4 S 2 0 8 000023 dd bb cc dd csd

S S 2 1 4 000027 ddbbccddeeffxxyyzzbbecddaaff0lcO | es5

! Line number is not in the record.

22 means the availability of data record in this line. A byte from the data sequentially burns at the ROM.

3N = 10 means that there are 16 hexadecimal bytes in this line including the 3 bytes for the address and 1 byte for checksum at the
end of the line. Number of data bytes for storing are specified in this line, Ny = 12 decimal. 0C means N = 12 and N, = 8 decimal.

4Starting address of 3 bytes, 000000 means the next 12 bytes store between address 0x000000 to 0x00000B. Therefore, ih the
next line starting address Addr = 0x00000C. ‘

5Bytes for burning in ROM are in this line and numbering = N,;. Each character in this column represents a nibble. cs0, csfl, .. are
the checksums of 1 byte each of all the bits in line number 0, 1, ..., respectively.

dded Software Development Process and Tools

Table 13.4 An Exemplary Intel Hex File format

Li e First Second Address, Sixth and N, *® Bytes for Storage
Number' ~ Character ~and Third ~ Addr’ Seventh in ROM from Addr sum’
Characters) Characters* (Maximum value of N,
for C? can be 253 decimal)
qQ 0 C 0000 0 0 aa bb cc dd ee ff xx yy zz bb cc dd cs0
I 0 8 000C 0 0 cc aa cc dd ee ff xx yy csl
2 0 E 0014 0 0 dd bb cc dd ee ff xx yy zz bb cc dd aa xx cs2
3 0 1 0022 0 0 0A cs3
4 0 4 0023 0 0 dd bb cc dd cs4
3 1 0027 0 0 ddbbcecddeeff xxyyzzbbecddaaff01c0 cs5

' Line jumber is not in the record.

2Numbler of data bytes for storing specified in this line, C4 = 12 decimal. 0C means Cy = 12.

3 Startigg address of 2 bytes, 0000 means the next 12 bytes store between address 0x0000 and 0x000B. Therefore in the next line
starting address Addr = 0x000C.

40 and| 0 means the availability of data record in this line is for the ROM. A byte from the data sequentially burns at the
ROM

5 Bytes|for burning in ROM are in this line and numbering = Ny. Each character in this column represents a nibble. cs0, cs1, .. are
the checksums of 1 byte each of all the bits in line number 0, 1, .., respectively.

13.3.3 Memory Map for coding a locator

Figure 13.5(a) shows memory addresses needed in the case of Princeton architecture in the system.
Figur¢ 13.5(b) shows memory addresses needed in the case of Harvard architecture. These differ in following
respegt.
Vectors and pointers, variables, program segments and memory blocks for data and stacks have different
addresses in the program in Princeton memory-architecture.

2] Program segments and memory blocks for data and stacks have separate sets of addresses in Harvard
architecture. Control signals and read-write instructions are also separate.

The system memory allocation map is not only a reflection of addresses available to the memory
blocks, and the program segments and addresses available to the IO devices, but also reflects a description
of th¢ memory and IO devices in the system hardware. It maps guides to the actual presence of the
variols memories at the various units, EPROM, PROM, ROM, EEPROM, Flash memory, SRAM (static
RAM), DRAM (dynamic RAM) and IO devices. It reflects memory allocation for the programs, and data
and 10 operations by the locator program. It shows the memory blocks and ports (devices) at these
addrepses. Figure 13.6(a) and (b) show memory and I/O devices memory allocation map for the 68HC11
(having memory-mapped IO architecture), and for an IBM 80x86 PC) (having I0-mapped IO architecture),
respegtively.

Four examples of memory allocation maps are given in Figure 13.7(a)~(d). System I/O devices map may
be degigned separately. An IO map not only reflects the actual presence of the /O devices, but also guides the
availdble addresses of the various device registers and port data. (An example of a device is a timer. 1/O
devicps are the peripheral units of the system.)

—

Embedded S

program memory by a separate set of instructions (input-output instructions) and control signals.

Fig. 13.5

Program
and data
Control _Read |
Signals {_Write |
Data Memory has Do-Dm-1 /
Input data as well > 7
as Output data From Data m
BIU/ N |7
Latch/ Address
Decoders Ag-A,_
Program memory has Boot Pl %

up Program, Functions,
Routines and Tasks

Signals Program code

from read enable
BIU 7
<
f;?ch Address 7 %
Decoder Aohg /
Y
Do-Dm-1 ~ -
B | AN
Control —Read Data |
Signals { Wirite Data %

(b)

Vectors & Pointers

Program Memory
as

well as

Data Memory
addresses
between
0x00..00

to

OxFF..FF

(0 to 2°P—1)

Stacks

Program
Memory
Addresses
between
0x00..00

(010 29-1)

Data Memory
Addresses
between
0x.00..00

to OxFF..FF

(0to29-1)

l
I
!
|
B
ﬁems
|

Memory map is used for coding locator software. The memory map defined for a locator includes the &
1/0 addresses designed after appropriate address allocations of the pointers, vectors, data sets and data strig
From the map, the locator program input can be easily designed. When the main memory is of
architecture, the program memory map will be separate, for example, 8051. The processor reads

(a) Memory map (Princeton architecture) (b) Memory map (Harvard menbry

architecture)

13.4

GETTING EMBEDDED SOFTWARE INTO THE TARGET SYSTEM

13.4.1 Device PROM or Flash Programmer

Device Programmer

This is also called laboratory programmer which is a programming systen] for a

device. The device is selectable and may be a PROM or EPROM chip or a flash or a unit in a microconfroller

or PLA, GAL or PLC. The selected device inserts into a socket (at the device programmer circuit)
programmed (burned the codes) by transfer of the bytes for each address using the software at the hos}.

hnd is

ed Software Development Process and Tools

Thejsoftware of the device programmer runs at a host system (PC or workstation or laptop). The host system
intercopnects with the socket and the device programmer circuit usually through a serial port (UART or USB).
Device programmer software running at the host uses an input file from the locator software output records.
The filg reflects the final design and has a bootstrap program plus the compressed record, which the processor
decompresses before the embedded system processor starts execution. (Bootstrap program is the program to
start up a system. We start from home by strapping our boots.)

Note:

1/0 Port and Memory

Addresses in
A 68HC11 Configuration

Port A 0x0000
PIQC
Port C
Poit B
Port C 0x0004
8‘,’,22% """" 0x003F
RAM 0x0040
Offichip_ OxQ00FF
RAM
0xB5FF
(a)
Fig. 13,6
based host system (PC)
Smart card Keys
IR o 0x1000 JCard VM;
' ash OTP ROM‘]<_— Application
- OX7TFFF codes
’ 0x8000
¢ Flash cF;;ct)ag];rammable
- OX9FFF
--------- OXA000 .
RAM ?tack, b
.......... OXBFFF 1emp variables
Dpil | C. @
'al Camera _
|
T ox100000 APPlication
‘fijgh OTP ROM r<~——— — codes;
‘ - 0400000
’ L1 Flash re—————— Image files
. 0XBFFF000
j RAM - 0xC00000 Preprocessor
L r—
i ..OXFFFFFF data; stacks

(c)

n IDE incorporates the device programmer within it.

Devices in a PCIO Port Addresses

0x00000...
to
OxFFFF...
System
Memory

0x0040

Timer
0x005F
0x0060

Keyboard
0x006F
0x0070

Real Time Clock
0x007F
0x03F8

Serial Port 2
0x03FF

(b)

(a) 10 port, memory and device address spaces in 68HC11 (b) Device addresses in 80x86-

Automatic chocolate vending machine

flash OTP [~ 0x001000
--------- OX00CFFF
RAM
... OXOOFFFF
Fiash | OXO1CFFF
Stored fe—-«—
Messages |- oxEFFFF
(b)
Robot
flashoTP |~ 0x001000
ROM - OXO0BFF
- 0x00C000
= OxO10FFF
- Ox11CFFF
Flash I E—
.. OXEFFFF

(@

RTOS;
Application
codes

Stack;
Temp
variables

Stored
Messages

RTOS;
Application
codes

Stack;
Temp
variables

Programmed
and learned data

Fig. 137 (a—d) Four memory allocation maps in four exemplary systems for their locator programs

Embedded Sygtems

Locator Program

[Hex File Intel Format _|
Or

Hex File S-Recoed
Motorola Format

Computer

RS232C Port
Programming
Pulse

Device Programmer

Interface +12V
Ribbon Cable for [S— 3 | CIRCUIT
Addressand ~~ /7777777777 S
Data Buses a For the device

Fig. 13.8 Burningin of the application software codes, data and tables using a device programmer

Use of Device Programmer for Downloading the Finalized Codes into PROM or Flash A
locator output is of the final design with a booting program plus the system program (with or without a
compression) plus initial data and shadow RAM data. Assume that a system design phase up to target
system is over. Refer to a memory map of the target PROM or flash. Finalized ones are put in nonqvolatile
memory at each memory address into the system by a process called burning.

Burning is a process that places the codes. Codes are the ones to be downloaded, according to ROM image
(locator output). Burning is done in the laboratory using a device programmer into an erased EPROM or
EEPROM or PROM or flash.

Figure 13.4 showed the method for burning-in the EPROM or in the EEPROM the S record or hex file
generated by a locator (Section 13.3.2). EEPROM does no erasing and can be programmed directly by the
device programmer. Flash uses a different file system.

Consider a device that has a 512 kB programmable memory. It means that it has eight signals (D, to|D,) and
19 [=log, (512* 1024)] address (Agto Ayg) signals. There are a total of 5,24,288 (=512* 1024) arrays of cells with
each array having eight cells. Each cell has for output the D bit as logic in the un-programmed (fregh) state.
Programming the device (locating the desired bytes) means replacing 1s with Os according to each by\lneeded
at each cell-array address. Bytes saved are as generated by the locator program of the embedded systgm after
the programming (after programming, the device memory part will hold the final bytes according to the need
after the completion of software development, testing and debugging cycle of design).

A ROM device programmer is a programming system for the PROM or EPROM or flash in a chip or unit
of a microcontroller or device. A device inserted into a socket (at the device programmer circuit) is pro ammed
on transferring the bytes for each address using a software tool at the computer and interconnedting the
computer with this circuit. The device program needs the locator output records in the input. This output must
reflect the final design, only then can the device program put the final inputs into the ROM. Recordg that are
input to a device programmer as per the device being programmed, are in three formats. The file fofmats for
burning the binary image are described in Section 13.3.2.

Alternative to a device programmer is that the application software codes are sent in a tabular form to a
specialized manufacturer. The manufacture prepares the ROM. The ROM is needed especially when many
thousands of pieces are needed. Integration of ROM with the processor, RAM and other hardwares of the
target system gives the final product.

- bided Software Development Process and Tools 633

13.4,2 Programming Method of Device Programmer

A 512/ kB device cell-array (at the address defined by Ayto A g signals) stores the ‘0’s as per Os at Dyto D,
h strobe pulse of a few microseconds duration is applied in the presence of a voltage V, by the device
mer circuit. A device programmer that programs its memory unit performs the following eight steps

conveft a ‘1’ to ‘0’. (v) Switches off the V,. (vi) Applies a next higher address than the previous one.
(vii) Repeats the aforementioned steps (ii) to (iv) for writing (converting) the logic states of Dy to D, bits at
current instance at new address. (viii) Continues till a cell array at last desired address is programmed.

The process of writing into the device is by converting logic | to 0, and is done by fusing the links on
applying programming voltage and programming pulse for a short duration.

The working of a device programmer is according to the processing and memory device.

Using EEPROM 68HC11 Example The working of a device programmer for programming the
internal EEPROM of 68HCI1 is as follows. The 68HC11 has a control register CONFIG. It is for system
configuration control. It keeps the data bits like an internal EEPROM address. It is also called an EEPROM
registgr whenever the programming unit is used within 68HC11. There is another register, the EEPROM register,
at the jaddress 0x003B. This register is kept to program both CONFIG as well as the EEPROM addresses in
68HC] 1 (the on-chip EEPROM addresses in 68HC11 are from 0xB600 to OB7FF). If CONFIG.0-bit (EPROM)
is ‘0’,{the erase or write (burn in) does not become feasible by any instruction. To burn in, first, the Oth bit of
CONEHIG (EEPROM) register is made ‘1°. Only then is the EEPROM programming voltage can be ON. If the
first bit is also made ‘1’ the EEPROM addresses and their data are latched with the help of programming units
within 68HC 1. If the register EEPROM.3 and .4 bits becomes 00 (0 and 0, respectively) bulk erase takes place
at the EEPROM addresses (bulk erase refers to all the available EEPROM addresses). If 01 is written a byte is
erased (byte erase means erase at one EEPROM address only). If 10, then a row of 16 bytes is erased. If the
second bit in EEPROM is made ‘1’ then only is the erase function enabled. An erase means all bits at an
EEPROM address are made‘1’s. The erase time is a total of 10 ms in all these three modes. When the erase
functipn is disabled (due to second bit = ‘0’ but programming voltage becoming enabled because the 0™ bit =
‘1), the burn in of bytes takes place by the execution of the write instruction for the appropriate address.

A ¢omputer’s RS232C UART port that sends and receives at 1200 baud and connects to RxD and TxD
pins ih 68HCI11 through a line receiver and a line driver, respectively. VDD, VRH, IRQ, XIRQ pins are at
+5V. YSS and VRL are at ‘0’. The reset circuit and 8 MHz crystal circuit connect as usual. Once 68HC11 is

includes the write to CONFIG or EEPROM register and to EEPROM addresses.

Using EPROM When using EPROM of the processing device (e.g., microcontroller), PROM is
first erased in ultraviolet (UV) light. Erasing makes all the 8 bits at each of the addresses into ‘1’s. An
erase facility provides reusability of the memory whenever the application software changes for another version

634 Embedded Sy

of the system. The software executed in the computer programs the EPROM as well as verifies
the bytes burned into the EPROM with the help of an interfacing circuit between the EPROM and computer’s
RS232C serial port. The EPROM interface circuit receives a byte serially from the computer through the
TxD line and later sends, along with its address, this byte for burning in the processing device’s EPROM| Burn-
in of codes is done as follows: During the period when the appropriate address and data are available frgm this
circuit, it also switches ON a high-voltage ~V Volt and applies a program pulse for a needed period. This|circuit
is sequentially programmed at each address by increasing the address after every program pulse.

An EPROM interface circuit also receives another byte serially from the computer through a TxD line and sends
this byte again for burning-in the processing device at the appropriate address. The bytes at the successive Sses
are received by the computer in a verify mode through the interface and RxD line. Some processing devicgs have
an auto program mode for its EPROM in which it can automatically copy the codes and data from an IQ.

~ 13.5 ISSUES IN HARDWARE-SOFTWARE DESIGN AND CO-DESIGN

There are two approaches for the embedded system design.
(1) The software development life cycle ends and the life cycle for process of integrating the softwdre into
hardware begin at the time when a system is designed. :

(2) Both cycles concurrently proceed when co-designing a time critical sophisticated system.

The final design, when implemented, gives the targeted embedded system and thus the final product.
Therefore, an understanding of the (i) software and hardware designs and integrating both into a syst m and
(ii) hardware—software co-designing are important aspects of designing embedded systems. :

Further there is hardware—software trade-off. Certain embedded components, for example, CCD co-
processor, CODEC execute fast when implemented by hardware but the design cost is high and the pr essor
performance requirements are also high.

Let us refer to an interview of Jean-Louis Brelet in an article ‘Exploring Hardware/ Software Co-désign
with Vertex-II Pro FPGAs’ (Xcell Journal, pp. 24-29, Summer issue, 2002). A Brelet reply, quoted verbatim,
when asked about the expertise required for successful implementation is as follows: ‘Software people must
understand the nature of hardware design and type of problems encountered by hardware team. They' also
must understand the possibilities and capabilities of hardware. Likewise hardware team must have a good
understanding of software and how the applications operate. Both teams must have a good understanging of
each other’s language and a willingness to adapt’.

The selection of the right hardware during hardware design and an understanding of the possibilities and
capabilities of hardware during software design is critical especially for a sophisticated embedded pystem
development such as Apple iPhone.

13.5.1 Choosing Right Platform

Software Hardware Tradeoff There is a tradeoff between the hardware and software. Hardware
implementations provide advantage of processing speed. It is possible that certain subsystems in hardware—
controller, IO memory access circuit, real-time clock, system clock, pulse width modulation, timer angl serial
communication are also implemented by the software. A serial communication real-time clock and timers f turing
microcontroller may cost more than the microprocessor with external memory and a software implemen tion.

Hardware implementation provides the following other advantages. (i) Reduced memory for the program.
(ii) Reduced number of chips but at an increased cost. (iii) Simple coding for the device drivers. (iv) Internally
embedded codes, which are more secure than at the external ROM.

) ed Software Development Process and Tools - | '

Ay be or may not be possible that certain subsystems in hardware (ASIP, microcontroller, DSP, single-
} processors) are implemented by software to get desired performance with the least system cost.

jng a Right Platform System design of an embedded system also involves choosing a right
. A platform consists of a number of units. Table 13.5 shows a list of these units and various
nding sections, which a programmer can refer to while selecting the unit to finally obtain a right
and right development tools.

Table 13.5 List of Units to Choose for Finally Obtaining a Right Platform and Right
Development Tools

Unit to be Choosen Section Describing that in Detail to Enable the Right Choice
Processor Sections 1.2, 2.1 and 2.3
ASIP ¢r ASSP Sections 1.2.3 and 1.2:4
Multiple processors Section 1.2
Systemp-on-chip Section 1.6
Mem Section 2.7.1
Other hardware units of system Section 1.3
Buses Sections 2.1.4, 2.2.1, 3.2, 3.3, 3.10, 3.11 and 3.12
Softwdre language Sections 5.1, 5.5, 5.6 and 5.7
RTOS |(real-time programming operating system) Sections 8.8, 8.9, 9.2, 9.3, 10.1, 10.2 and 10.3
Code generation tools Section 13.1
Tools finally embedding the software into binary image ~ Section 13.3

Embedded System Processors Choice
(A) Prpcessor-less System: We have an alternative to a microprocessor or microcontroller or DSP.
Figure 13.9(a) shows the use of a PLC in place of processor. We can use a PLC for the clothes-in clothes-out
type sy$tem (Section 1.1.1). A PLC fabricates by the programmable-gates, PALs, GALs, PLDs and CPLDs.
A PLC has very low operation speed. It also has a very low computational ability. It has very strong
interfading capability with its multiple inputs and outputs. It has system-specific programmability. It is simple
in application. Its design implementation is also fast. Automatic chocolate-vending machine can be another
application of PLC. '

- (B) $ystem with Microprocessor or Microcontroller or DSP: Section 1.2 gave a detailed description of
the progessors described for the embedded systems in detail. Figure 13.9(b) shows the use of a microprocessor
or micrpcontroller or a DSP. :

(C) System with Single-Purpose Processors and IPs in VLSI or FPGA: A line of action in designing
can be juse of the IPs, synthesizing using VHDL-like tool and embedding the synthesis into the FPGA.

636 o Embedded Sstems

Figure 13.9(c) shows the processing of functions by using IPs embedded into VLSI or FPGA in:
processing by the ALU. The IPs implement the functions, which if implemented with the ALU then cading by
programmer will take a long development time.

Display Unit

|
| Microprocessor or
: Microcontroller or DSP
Input Unit l .
PLC Unit or Multiprocessor
Communication Unit
LPower. Supply Unit | Display U l
Memory Unit - -
(a) (b)
ASIP (Application IPs for USB
Specific Instruction Memory or TCP/\P
Processors) . or PCl Stack
-« FPGA >

(c)

Fig. 13.9 (a) Use of a PLC in place of a processor (b) Use of a microprocessor or microcontrpller or
a DSP (c) Processing of functions by using IP embedded into the-FPGA instead of
processing by the ALU

The sophisticated operation parts on a VLSI chip implement using copyrighted IPs. Each IP is syn
at gate level using VHDL or Verilog. (VHDL (VLSI high-level description language) and Verilog| are the
languages for simulating and synthesizing the gate-level design. VHDL also implements concurrepcy and
synchronization problems and a structural hierarchy strategy. In addition to these features, Verilog uses C-like
functions. Therefore, the exception handling and timing problems are also programmable. There jare two
languages for programming and implementing FSM, state transitions, concurrency. synchronization and
behavioural hierarchy. These are StateCharts and SpecCharts.)

(D) Factors and Needed Features Taken into Consideration: We consider a general purpose pfocessor
choice or choose an ASIP (microcontroller or DSP or network processor). When the 32-bit system, 16kB+ on
chip memory and need of cache, memory management unit or SIMD or MIMD or DSP instructions drise, we
use a microprocessor or DSP. For example, the video game, voice recognition and image-ﬁlteringaEystems
will need a DSP. Table 13.6 gives the factors that are considered by a system programmer before chposing a
microprocessor or microcontroller as a processing unit.

Refer Section 2.1 for 8051. Microcontroller provides the advantage of on-chip memories and sul

PWM and/or ADC on-chip availability. Latest versions for 8-, 16- and 32-bit microcontrollers can Be
from the websites of the giants, ARM, Intel, Motorola, Phillips and Microchip (for 8-bit systems). |

E&h#dded Software Development Process and Tocls ‘ 637

ble 13.6 Factors and Needed Features in the Microprocessor or Microcontroller or
DSP-Processing Unit of the System

Factors for On-Chip Feature Needed or which Available in

One Needed Chosen Chip

8-bit or 16-bit or 32-bit ALU 8/16/32 8/16/32

Cache, memory management Unit or DSP calculations Yes or no Yes or no

Inteasive computations at fast rate) Yes or no Yes or no

Tota} external and internal memory up to or more than 64 kB - Yes or no - Yes or no

Integnal RAM 256/512 B » 256/512 B

Intefnal ROM/EPROM/EEPROM 4 kB/8 kB/16 kB 4 kB/8 kB/16 kB

Flas 16 kB/64 kB/1 MB/8 MB 16 kB/64 kB/1 MB/8 MB

Timer 1,2 0r 3 17213 1/2/3

Wat¢hdog timer Yes or no Yes or no

Syndhronous communication interface (SI) half duplex Full/half . Full/half

Serigl UART Yes or no Yes or no

Input captures and Out-compares Yes or no Yes or no

PW Yes or no) Yes or no

Single- or multi-channel ADC with qr without '

pro, mable voltage reference (single or dual reference) S/IMW/WO V S/D SMW/WO V_,S/D
DMA controller Yes or no Yes or no-

Powgr dissipation Very low/low or normal Very low/low or normal

13. .2 Memory- and Processor-Sensitive Software -

Table|13.7 gives the examples of memory-, processor-sensitive programs.

13,3.3 Allocation of Addresses to Memory, Program Segments and Devices

Functions, Processes, Data and Stacks at the Various Segments of Memory Program routines
and pfocesses can have different segments. For example, a program code can be segmented and each segment
stored at a different memory block. A pointer points to the start of the memory block storing a segment and an
offsetvalue is used to retrieve a memory address within that segment.

The can be different segments at the memory for the functions and processes (treads or tasks). These can
co}n ise of different segments for data and different segments for the stacks. Each segment has a starting
yry address and ending memory address. Each segment has a pointer address and an offset address.
offset, a code or data word is retrieved from a segment. ‘

There can be different sets and different structures of data at the memory (Sections 5.4.2 and 5.4.3). Following
are the examples of the data structures and data sets that are commonly used during processing in a system
t are stored at the different memory blocks in a system.
structure, called stack is a special program element. A stack means an allotted memory block from

‘ o ~ Embedded $

completion of the called routine, the processor returns only to the one calling, the instruction address for
return must be saved on the stack. There can also be nesting. It means one routine calling another, and that
calling another and return from the called routine is always to the calling routine. Therefore, at the memory a
block of memory address is allocated to the stack that saves the return addresses of the nested calls.
1. There may be at the beginning an input data saved as a stack at RAM in order to be retrieved later in

the LIFO mode. An application may create the run-time stack structures. There can be multiple data

stacks at the different memory blocks, each having a separate pointer address (Figure 5.1).

Table 13.7 Hardware-Sensitive Programming

Program : Examples . i

&

Processor-sensitive Recall Sections 2.1, 2.3 and 2.4. A processor has different types of structural units It capy "

may be havmg fixed-point ALU only. Floatmg point operations when needed are »: dled
dlfferently thanin a processor with ﬂoatmg-pomt operations. A processor may not pro %' :

or optimizing compiler subunit to obviate need for programming in assembly. 3
Memory-sensitive i) An example of a memory—sensmve program is video processmg and real- tlme.»,

processed. When higher resolution without acceptable missing frames is used, thdn #for
the given performance of processor in MIPS the less number of frames can be proeq
Real-time programming model and. algorithm used by a programmer will depg
memory available and processor performance. ‘
(ii) Memory address of IO device registers, buffers, control registers and vector addresg
the interrupt sources or source groups are prefixed in a microcontroller. Programmy
these takes into account these addresses. The same addresses must be allotted for these
the RTOS. Memory-sensitive programs need to be optimized for the memory use by §ki
programming.]
(iii) When using certain instruction sets like Thumb® in ARM processor helps,l 61bit
instructions, which save less memory space than the use of 32-bit ARM instructidif s

or thread. The context includes the return address for PC for retrieval on switching back to
There are multiple stacks at the memory for the different contexts at the different memory bloc

A stack is a special data structure at the memory. It has a pointer address that always points to the té
stack. This pointer address is called a stack pointer.

d Software Development Process and Tools '

THe other data sets, which are also allotted memory, are as following.

A string is allotted memory for ASCII (8-bit) or Unicode (16-bit) characters, followed by a null
character at the end. A string object is allotted memory for the fields for string characters and for the
methods to manipulate the string (e.g., concatenation).

A circular queue is allotted addresses for a queue in which both pointers cannot increment beyond the
memory block (buffer) and reset to starting value on insertion beyond the boundary (Figure 5.2).

A one-dimensional array is allotted addresses for a special data structure at the memory. It has a
pointer address that always points to the first element of the array. From the first element pointer and
index of that element, an address is constructed from which the processor can access one of the array
elements. Index is an integer that starts from 0. Data word can be retrieved from any element address
in the block that is allocated to the array.

A table is a two-dimensional array (matrix) data set that is allocated a memory block. Three pointers, table-
base, column-index and destination-index pointers can retrieve an element of the table. There is always a
base pointer for a table. It points to its first element at the first column first row. There are two indices, one
for a column and the other for a row. Figure 5.3(a) shows a memory block with the pointers for a table.
A hash table is allocated a memory block for a data set that is a collection of pairs of a key and a
corresponding value [Figure 5.3(b)]. A hash table has a key or name in one column. The corresponding
value or object is at the second column. The keys may be at non-consecutive memory addresses. Just
as an index identifies an array element, a hash key identifies a hash element.

Look-up tables have columns and store the pointers to the values. The first column of a table is used as
a pointer to the value to get the set of values.

A list is allotted memory for a data structure in which each element also stores a pointer to the next
element at list. It has one memory block allotted to each of its elements. The list-top pointer points to
its first element and the last element points to null [Figure 5.3(c)]. A list is a data structure with a
number of memory blocks, one for each element. A list has a top (head) pointer for the memory
address from where it starts. Each list element at the memory also stores the pointer to the next element.
The last element points to null. A list is for non-consecutively located objects at the memory.

DeVi.*e, Internal Devices and 1/O Device Addresses and Device Drivers All /O ports and

devic

s have addresses. These are allocated to the devices according to the system processor and the system

hardware configuration.

I/Q device addresss are considered as part of the memory addresses by certain processors. Certain processors
provide for configuring the memory addresses. On the other hand, the 8051, 80196 and 80196 microcontrollers
have pre-assigned device addresses for its internal devices and these are un-configurable addresses.

device addresses are not the part of the memory addresses in 80x86 processors. (Figure 2.8(b)).

Segtions 3.2 and 3.3 described /O serial and parallel devices in detail. Device addresses are used for
processing by the driver (Section 4.9). A device has an address, which is usually according to the system
hardware or may also be the processor-assigned ones. These addresses allocate to the following.

[oy

2,
3

Ea¢/

| Device data register(s) or RAM buffer(s).

Device control register(s). It saves control bits and may save configuration bits also.

Device status register(s). It saves flag bits as device status. A flag may indicate the need for servicing
and show occurrence of a device interrupt.
h device, and thus each device register must be allocated addresses at the memory map. A very important

point fo remember is that in most cases, each set of IO device addresses is often fixed by the system hardware.
A locator or loader cannot reallocate these to any other set of addresses. Another point to remember is that

‘ Embedded Sysqms

can also be just like a file, making it read only or write only or both read and write only.

The address of I/O device registers, buffers, control registers, vector addresses for the interrupt sou
source groups are prefixed. Similarly, the addresses of device control register bits and status register bi
prefixed. Programming of each bit is used in different functions of the device. Device-driver
implementation is hardware-dependent. Open source drivers are available for ports, buses and physical
attachments in Linux. Device drivers in Linux let us use each module of a class of device register, de-register
and schedule like a process. Programmers can port these directly as these are open sources also.

Appropriate interface functions are needed for porting into system the processor-sens:tlve memory-senﬂ
programs and ISRs. Appropnate drivers are needed for device-sensitive programs. ;

i mﬁ;

Example 13.1 gives the details of addresses of the registers of an I/O device, serial-line UART device
(Section 3.2).

Example 13. 1

A serial-line device has the addresses of devnce registers as follows: These addresses are fixed bgi
hardware configuration of UART port interface circuit in a system employing 80x86 Processor. They
from 0x2F8 to 0x2FE at COM1 in a PC.
1. (a) Two VO data buffer registers (one for receiving and the other for transmmmg) are at a oom
address, 0x2F8. Provided a control bit at address 0x2FBH is 0, during read from the address,
processor accesses from the RBR (receiver data buffer register) of the device and during write to
address, the processor accesses the TRH (transmitter-holding register) of the device at 0x2F 8k

(b) Provided a control bit at address 0x2FB is 1, data of two bytes of divisor latch are at the disting
addresses, 0x2F8 (LSB) and 0x2F9 (MSB). Divisor latch holds a 16-bit value for dividing the s S ‘- '
clock. This then selects the rate of serial transrmssxon of bnts at the line. (While writing a d@ i

reglster to lower byte of the divisor latch register. 1
2. Three control mgzsters of the device are at three distinct addresses OXZFA Ox2FB and 0x2FC. Hese

register). It deﬁnes how the modem handshakes and communicates. i

3. Three status registers of the device are at three distinct addresses 0x2FA, 0x2FD and 0x2Flg4 4
These are as follows: (a) IIR (interrupt identification register) at 0x2FA. It has the flags. A ﬂag ;
sets on a device interrupt and resets at system reset and at servicing of corresponding device
interrupt. (b) LCR at 0x2FD. It defines how and how many bits will be on the line.
(c) MCR at 0x2FE. It defines how the modem handshakes and communicates.

addresses of a device are according to thc system processor and the system hardware conﬂgurano
processors process the memory devices and other devices with the same instructions. 80x86 pro
process the I0s with a different set of instructions (input—output instructions).

d Software Development Process and Tools

13.5/4 Porting Issues of OS in an Embedded Platform

The foJlowing portability issues may arise when OS is used in an embedded platform. Table 13.8 gives the

-dependency issues and the need for appropriate OS-Hardware interface functions for each issue.

le 13.8 Platform-Dependency Issues and Need for Appropriate OS—Hardware
Interface Functions

Plagfgrm Dependency

Need of Appropriate OS-Hardware Interface Functions

I/O instructions

Interfyce-specific

Data 3lignment

Linked lists

Memdry page size

Time |ntervals

A port instruction data type may be different on the different platforms, as follows:
(i) unsigned char* (PowerPC, M68HC11/12, M68K, S390),

(ii) unsigned int (ARM)

(iii) unsigned long (Itanium, Alfa, SPARC)

(iv) unsigned short (80x86).

Interrupt vectors are to be defined differently. (Section 4.4) OS supports these differently on
different platforms.

OS should have appropriate APIs for data types. There may also be need as Linux declares
all data types in <asm/ types.h> and it includes in <linux/types.h> as the following:
(i) unsigned byte (means 8-bit character also)
(ii) unsigned word (means unsigned 16-bit and also unsigned short)
(iii) unsigned int (means unsigned 32-bit)
(iv) unsigned long (means unsigned 32-bit).

For example, a network interface card supports 32-bit unsigned integers and with a big
endian. » ‘

Ii may depend on the processor. Lower byte first in an integer (little endian) and the uppér
byte first in an integer (big-endian). Some processors support both (ARM),

(i) Two or three bytes stored at an address from which the processor accesses 4 bytes in an
access.

(ii) Same data structure at ‘C’ source file may show differently on different platforms (‘C’
takes 16-bit integer on a 16-bit processor and 32-bit integer on a 32-bit processor).
Compiler must force the alignment of data by the OS-hardware interface function.

An OS maintains the lists for different data structures. OS provides the standard
implementation of doubly linked lists and circular linked lists. Platform-dependent device
manager and drivers must include support to these. (Circularly linked means last element of
the list linked not to the NULL pointer but to the first element of the list. Doubly linked list
means that each element has.two pointers, one for the next element and one for the previous
element.)

PAGE_SIZE is 4 kB in Linux. A processor may support different page sizes than this.

Linux OS defines the system?clock ticks and interrupts at each 10 ms. The timer functions
need to be verified for actual functioning on porting an OS into a platform.

') ' Embedded s‘+¢ns

When porting RTOS codes into the system, the porting of I/O instructions,ISRs, data types, inté
specific data types, byte order, data alignment, linked lists, memory page size and time intervals my
taken care of as these are platform-specific. OS-hardware interface functions are needed for these.

13.5.5 Performance and Performance Accelerators

Performance Modeling

(A) System Performance Index: The performance of the finally developed embedded system is a
of success. Its performance at each life cycle of the development process is tested for the following: each
required function must show after the test that its characteristics are in conformity with the required and
agreed specifications.

The system performance index can be defined as the ability to meet required functions and specifigations
while using the minimum amount of resources of memory, power dissipation and devices and migimum
design efforts and optimum utilization of each resource (e.g., high CPU load).

The best embedded software and hardware is the one that achieves the balance among different perf
metrics.

(B) Multiprocessor System Performance: The multiprocessor system performance is measured by: (i)
an optimized partition of the program into the tasks or set of instructions between the various processors, and
then (ii) an optimized scheduling of the instructions and data over the available processor times and resqurces.
Performance cost is more if there is idle time left than the available time. Performance matrix is first objtained
to calculate the total cost. ,

(C) MIPs, MFLOPs and DMIPS as Performance Indices: One performance design metric is ho
a system takes to execute the desired system functions. Processor clock frequency and MIPs (million inst
per second) and MFLOPs (million floating point instructions per second) are often quoted as
characteristics for expected system performance. It is not however correct metrics. A processor performance
design metric is Dhrystone/second. Processing performance is often measured in DMIPS Dhrystone million
instruction per second (1 MIPS = 1757 Dhrystone/second) (Section 2.6). EDN Embedded Benchmark
Consortium (EEMBC) proposed five-benchmark program suites for: (i) telecommunications, (ii) corfsumer
electronics, (iii) automotive and industrial electronics, (iv) consumer electronics, (v) office automatioh. It is
also used for measuring and comparing embedded system processor performances.

(D) Performance Metrics: Buffer Requirement, I0 Performance and Bandwidth Requireme : The
buffer helps in accelerating the performance of the system. Memory or I/O buffer requirement may be somgtimes
a constraint. IO performance is measured by throughput and buffer utilization. Larger bandwidth requitement
in client-server systems may be a constraint. ,

(E) Real-Time Program Performance: Recall Sections 8.10.8 to 8.10.10. Three performance metrics
were described: (i) ratio of sum of interrupt latencies as a function of the execution times, (ii) CPU load, (iii)
worst case execution time with respect to the mean execution time.

Data communication and multimedia communication have differing performance indices. Loss of 3ny bit
needs retransmission. Also no frame or packet miss is tolerable. On the other hand missing frames within
acceptable limits are tolerable in video and multimedia systems.

The time of scheduling of a task can be measured by appropriate scope or analyser or by instruction gounts
or by instruction execution time profiler at the simulators. '

Choice of appropriate real-time programming model, partitioning into tasks and scheduling algerithm
reflect in the following three metrics as follows:

nce

A
; 4
' A4

Perf

these

ed Software Development Process and Tools

. System throughput. Comparative performance with respect to the previous life cycle in the development
process or previous pertormance of the system. Relative performance equals relative increase in

. throughput.

- Latency or response time of each task or ISR (Section 4.6). Both throughput and latency may be unrelated.

. Delay zitters may be a performance metric instead of response times in some cases. The delays (latencies)
between retrie =15 of the data frames or packets or video-frames can vary. This variation is random or
statistically Gaussian distributed and is called delay zitter. The noticeable zitter in delay from the
expected variation is undesired. It degrades the system performance. Image zitters may not be tolerable,
but delayed retrieval within the acceptable threshold is tolerable.

prmance Accelerators There can be several ways to accelerate the performance. Examples of

are as follows.

. Conversion of CDFGs into DFGs, for example, by using loop flattening (loops are converted to straight
program flows) and using look-up tables instead of control condition tests to decide a program flow path.

- Reusing the used arrays and memory and appropriate variable selection, appropriate memory allocation
and de-allocation strategy.

. Using stacks as data structure when feasible instead of queue and using queue instead of list, whenever
feasible.

. Computing slowest cycle first and examining the possibilities of its speed-up.

Code such that more words are fetched from ROM as a byte than the multibyte words.

Co-processors and IPs such as Java accelerator accelerate the performance.

y ﬁost system and software development tools are used in developing, testing and debugging the embedded software
" gnhdevelopment phase.

ere are a number of software and hardware tools to implement the designed system easily with simple efforts.
ese are: simulators, editors, compilers, assemblers, source code engineering tool, profiler (for viewing time
t at each function or set of instructions), memory scope, stethoscope-like view of code execution, memory
&nd code coverage scope, emulators, ICEs oscﬂloscopes, logic probes, logic analysers and EPROM/EEPROM
‘phcanon codes burner.

er and locator are used for developing the codes for the target hardware. Locator files have Intel hex or Motorola

Bt fonnat.Dewcepmgrammcrxsusedtobmnthebmaryunageofﬂxecodesﬁomthelocator—cmatedﬁles

ik ' totype development tools and IDE are used to develop the fully simulated, tested and debugged sophlsncated

i@mbedded systems with simpler efforts.

Selection of right hardware during hardware design and understanding of possibilities and capabilities of hardware
uring software design is critical especially for a sophisticated embedded system development.

There are several ways of measuring system performance. It can be a system performance as per the required and
jgreed specifications, power dissipation, throughputs, 10 throughputs, response time of tasks, deadline misses,
esponse to sporadic tasks, memory buffers, bandwidth requirements and memory optimization. Latency intervals

Mnd deadline misses are measured to understand the performance of the real-time programming, schedulmg models
nd algorithms.

Performance index gives the desired performance with respect to the required specxﬁcatlons or parameters*
e Performance accelerators are used to improve the performance. Acceleration means using the same syste;
alternative ways such that it reduces execution times of a set of codes, reduces latencies of the tasks or incre
throughput or minitnizes memory usage or power dissipation or reduces missing deadlines. Some ways are]
flattening; look-up tables, reusing the used arrays and memory and appropriate variable selection, appropfate
memory allocation and de-allocation strategy and using stacks as data structure when feasible instead of gp
and using queue instead-of list whenever feasible. We must look at computing slowest cycle first and e: ! nf;
possibilities of its speed-up.. ~
e Choosing the right processor, memory, dev:ces and bus and porting by OS/RTOS the processor-sensitive, me
sensitive and device-sensitive instruction is a must. Byte order and data alignment must be according té ﬂ?
i

platform chosen.

Embedded Sys%

E

Action plan
Assembler

Big endian
Burning

Circular linked list

Doubly linked list

Co-designing

Cross-assembler

Data alignment

Debugging tools
Delay zitters

Device programmer.

Dissembler

£
‘ Keywords and their Definitions

: A plan for action of the development process.

: A tool for assembling the edited codes in mnemonics.

¢ An ordering in which the highest byte of a number is taken as first. _
: An act of placing the ROM image for code and data in uncompress: ~

: Software team designs with complete knowledge of hardware capabllm ; by

. An assembler that assembles code for host machine for sxmulauon and o

: Tools for debugging embedded system hardware and software functioni: :
: The delay zitters mean the variations in the delays in retrievi. , or arrifg

: A tool for obtaining higher-level codes from the machine codes, whic! :

compressed format into an EPROM or EEPROM or flash or microcontrolld
some other similar device. ‘
A data structure for a list in whlch the last element pomts to the ﬁrst eldple

instead of pointing to NULL in‘a useal list.

NULL in a usual list.

features and hardware team designs with complete knowledge of soft
CDFGs and functions to be achieved. Certain software functions are imple
by hardware and certain hardware functions are implemented by software
the aim of achieving desired system performance at lowest cost.

purposes and later generates assembled codes for the targeted processor. 3

access in a processor designed for 32-bit per instruction or word and (&) ‘
same data structure at ‘C’ source file showing differently on different platf
having different data alignments. :

successive data sets. The noticeable variations are undesired.
A device fqr burning in the codes (Refer to Section 13.4).

assembled earlier.

‘ 1. jded Software Development Process and Tools

w ‘endian
Netweorking stack

-
e

A cycle in implementation phase in which codes are edited, tested and debugged
for reported error on test.

Organizing people, processes, product and project. People in embedded system

development project means a team of software .development, hardware
development and system integration engineers.

: A PC or workstation or laptop, which is a computer loadéd with software tools
and includes the program developmem kit for a high-level language program or

IDE.

: - Interactions of a user through tools hke keypad display unit and GUlIs.
: - Processor read, write, byte manipulation and other instructions for usmg adevice'

at a port.

: A function or ISR or device drlver or OS function or data type or data structure

utilization, dependent on the processor or memory or devices in the system.

: Refer to IDE.

: Afully integrated tool consists of simulators with editors, compilers, assemblefs,

RTOS source code engineering tool, profiler (for viewing time spent at each
function or set of instructions), memory scope, stethoscope-like view of code
execution, memory and code coverage scope, emulators, logic anaiy§ets and
EPROM/EEPROM application codes burner.)

: An ordering in which the lowest byte of a number is taken as ﬁrst

A stack according to a protocol chosen, for example, protocol RFC -1323, CIDR,
IP Multicast, IP, UDP, TCP, DNS client, DHCP server, SMTP server, RIPv1
support, RIPv2 support, ARP, proxy ARP, BOOTP or RLOGINN client and
server (for Telnet). An embedded system socket can then connect to multiprotocol
LANSs, ATM network or SONET or wireless access and intelligent networks
using the protocol stacks for the network.

Interpreter does at run-time expression-by-expression (line-by-line) translation
to the machine-executable codes.

: Time taken to activate code execution after an event or time taken in finishing

certain codes before the next one starts.

. Indexto mgasure the desired performance with respect to required speciﬁcations.
¢ Using the same system, alternative ways to improve execution time for a set of

codes and reduce latency or increase throughput or minimize memory usage or
power dissipation.

Indices for measuring the performance using different measures.

A unit of memory in kilobytes, which can be, referred to as a single block from
start address and a memory address in it can be referred by start address plus
offset.’ .

: . Size of the page taken by memory manager.

: Tools for déveldping by co-designing a protype for embedded system.

: A programmable unit to perform sequential logic control functions.

: Issues when a software developed at one platform is embedded at another

platform.

: An appropriate hardware platform with appropriate software to give best

~ performance at minimum efforts or costs. §4 1
Software-hardware tradeoff : To appropriately plan and optimize performance at the least cost and ché
which set of - processing elements, functions and codes (e.g., VLIV

implemented by a hardware subunit and which by a software module. .

System cost Cost for hardware and software. It includes all the costs for the develagimént
‘ ‘ team and management efforts. ' 3

System integration : Integration of embedded software into the hardware and getting a va aled
product with optimized performance. i

Target system : A system for the targeted embedded system that is used during devel ent
. phase and the final products of software and hardware are made from it§} .

Test vector : A setof statements in the program for controlled flow of programs—-—patt% ing
o test phase. i

Throughput - : Number ofprocesses or specified functions executed per unit time. ; o

: systems, it is the number of bytes outputted or read per unit time. 41
VHDL and VeriLog : Languages for designing and synthesizing the VLSI implementation of a tem

.or a part of the system.

Review Questions

development system.

2. Explain functions of device programmer.

10.
11.

12.

13.
14.
15.

Why do we use host system for most of the development? What are the software tools needed at the host?

. Describe functions of compiler, linker, locator, loader, interpreter, dissembler, cross-assembler and int¢grated

What is a target system? How does the target system differ from the final embedded system? What do we mjean by

application software for a target system?

How do the readily-available networking stacks and device drivers at RTOS help in faster error-free desig]

Why is system performance index defined as the ability to meet required functions and specifications whil

h?

using

the minimum amount of resources of memory, power dissipation and devices and minimum design effofts and

optimum utilization of each resource (e.g., high CPU load)?
Why is the /O instructions platform dependent? Define throughput of an I/O system.

How do the data align? Take the example of 32-bit integer stored as big endian as an example for aligning bytes

from an input stream.
How do you solve the problem of interface-specific data types?
Why is the selection of the right platform essential during the embedded system development process?

Explain the software—hardware trade off? What are the advantages and disadvantages of software impleme
instead of hardware implementation?

What are the advantages and disadvantages of hardware implementation instead of software ‘_nplemeq
What are the advantages of using FPSLIC (filed programmable system logic IC) in an embedc d system?

Why are the device drivers of the programs memory- and processor-sensitive?
What are the factors for selecting a processor during the system design phase?
Describe performance-accelerating methods.

ntation

tation?

Eé\lhdded Software Development Process and Tools ' : 647

i
{

Practice Exercises

16. [Take a commercial IDE, for example, from Kiel and study its functions, features and capabilities.

17 Explain with one example the use of each of the following: application development tools, native development
i lenvironment, APIs to RTOS, debugging capability device simulation, network simulation and user interface.

18. ﬁxplain with one example the use of each of the following software tools: profiler scope, memory usage scope,
| Istethoscope, scope for trace of program flow, scope for memory allocations and uses and scope for code coverage.

19. iExplain hardware-software tradeoff by taking the examples of digital camera and ACC.

20. |You can design an SoC by three routes: using gate arrays, using standard cell and using IPs and basic component

layouts. List cases of embedded systems for each of these three routes.

21. {How does a buffer help in improving a system performance? What is the performance metric for a multiprocessor-

based embedded system router? When is the minimum interrupt latency taken as embedded system performance

metric? (Assume that router that has 10/100 Mbps bandwidth, ethernet interfaces for LANSs, Gbps ethernet interface

for connection to servers, WAN and internet interface of frame relay, ATM and packet over SONET/SDH.)

Read on-line topic, ‘Software Engineering Approach in Embedded System Development Process’ and ‘Embedded

Systenps Project Management® at web material accompanying the book and answer the following.

22. (What do you mean by embedded system-independent design followed by system integration and by embedded
stem concurrent hardware-software co-design? Give five examples for each design strategy.
at should be the goal during an embedded system development process? How does it vary from the software
velopment process?
hat is the action plan to follow while designing an embedded system?
o are the people involved in an embedded system development project? How will you select them for the case
tudies of systems described in Chapters 11 and 12? How will the team change when real-time video-processing
ystem is under development? .
ive system specifications for: (i) product functions and tasks, (ii) delivery time schedule, (iii) product life cycle,
iv) load on system, (v) human-machine interaction, (vi) operating environment, (vii) sensors, (viii) power
uirement and environment, (ix) system cost for a digital camera. Camera should be capable of storing 4 minute
ideo or 500 still images. The system should include the USB port, imaging cum video software, single shot timer
. ptandard as well as 10 second delay modes. Multiple resolutions are: 1024 x 768, 640 x 480, 320 x 240 and
: [160 x 120 pixels. Answer after web search.
27, Explain product design life cycle.
28, What do you mean by system project management?)
29, Explain the terms: (i) product functions and tasks, (ii) delivery time schedule, (iii) product life cycle, (iv) load on
. pystem, (v) human-machine interaction (e.g., bv ! _'pad and display subunits), (vi) operating environment (e.g.,
- pemperature and humidity), (vii) sensors, (viii) power requirement and environment, (ix) system cost.
30, Explain meaning of conceptual design.
31, List UML diagrams, which help in developing the conceptual design, structure and layout.
32, Explain two design approaches: independent design and co-design.

23.

24.
25.

26,

Testing, Simulation and
Debugging Techniques
and Tools

Embedded system hardware and software architecture,
programming and design have been learnt in previous

€ chapters. At the stage of porting codes into hardware,
there is edit-test-debug cycle, which is repeated till a
bug-free code is obtained.

ey

i« . e

T N T

L
E
a
'R
N
LI
]9\[_
G

Testing and debugging ensures the system quality. A rule, which the developer must
Jollow is that wrong until confirmed right by testing and debugging. Documentation
in detail for each stage of testing and debugging is also a necessity. We will learn the
Sfollowing:

1. System codes are tested on the host system as host system has application
development tools, large memory and windows or powerful GUI.

2. Simulation by a simulator, which runs on host, helps in system development by
simulating target processor or microcontroller, peripherals, devices and network
interfaces.

3. Laboratory tools, in-circuit emulator and monitor help in target system hardware
development and target system software testing and debugging in the target
environment.

" 14.1" TESTING ON HOST MACHINE

We have two systems with different CPUs or microcontroller and hardware
architecture. One system is host and the other is the target (Sections 13.2 and 13.4).
The host is generally PC or laptop or workstation. Target is actual hardware to be
used for embedded system under development.

Testing and debugging have to be there at each stage as well as at the final stage
when the modules are put together. Test at initial stages is done on the host machine.
Host machine is used to test hardware-independent codes. Host machine is also used
to run simulator (Section 14.2). Figure 14.1 shows the test systems in a development
process. It shows host and hardware systems, and host-dependent, target-independent
and target-dependent code. The code has two parts: hardware-independent and hardware-
dependent codes. For example, port and devices will have fixed addresses on hardware,

Application :

System Development tools; — ROM

Test on Cross compiler; ICE Emulator

host ~ ‘Simulator; AN

system Test input - ".. and Target
Tosting software data_\\ 1 /0t processor
Host processor independent
dependent and Host System and dependent
target processor (PC or codes
independent code workstation

or laptop)

Fig. 14.1 Host and hardware systems and host-dependent, target-
independent and target-dependent codes and test systems in a
development process

Table 14.1 gives nine steps during testing.

‘ e , ‘ = e .Embedded.Sy*%S

Table 14.1 Testing Steps at Host Machine

Steps . : Action 8]

1. Initial tests Test each module or segment at initial stage itself and on host itself. t

2. Test data All possible combinations of data are designed and taken as test data.

3. Exception condition tests Consider all possible exceptions for the test.

4. Tests-1 Test hardware-independent code. .

5. Tests—2 Test scaffold software (scaffold software is software running on the host aff tHe
target-dependent codes and which have the same start code and port and déyige
addresses as at the hardware. Instructions are given from file or keyboard i .
Outputs are at LCD display and saves a file). ~_j

6. Test interrupt service routines Those sections of interrupt service routines are called, which are hardware- |

i

hardware-independent part independent and tested (e.g., deciphering the data routine).
7. Test interrupt service routines Those sections of interrupt service routines are called, which are hardware-dep@ eht

hardware-dependent part and tested (e.g., receiving the port data into a buffer). 3
8. Timer tests Hardware-dependent code has timing functions and uses a timing device. 'I}m of-
related routines such as clock nck set, counts get, counts put, delay are tested.
9. Assert macro tests The use of an assert macro is an important test technique. For example, con

program will halt. We insert the codes in the program that check whether a cond
or a parameter actually turns true or false. If it turns false, the program stopi
can use the assert macro at different critical places in the application program

a
command, ‘assert (pPointer = NULL);". When the pPointer becomes NULL/{ the
n
e

T 14.2 SIMULATORS

Before flying an aircraft or fighter plane, a pilot uses the flight simulator for training. (A flight simulatog may
cost hundreds of millions of dollars!)

Simulator uses knowledge of target processor or microcontroller, and target system architecture op the
host processor. Simulator first does cross-compilation of the codes and places these into the host system
RAM. The behaviour of the target system processor registers is also simulated in RAM. It uses linkey and
locator to port the cross-compiled codes in RAM and functions like the code that would have run at the 3ctual
target system. Host system is a PC or workstation or laptop and generally works in Windows.

Simulator software also simulates hardware units such as emulator, peripherals, network and input-gutput
devices on a host (PC or workstation or laptop). A simulator remains independent of a particular targeted
system. It is extremely useful during the development phase for application software for the system that is
expected to employ a particular processor or microcontroller or device. The results expected from codes at
target system RAM, peripherals, network and input-output devices are obtained at the host system RAM.

A simulator helps in the development of the system before the final target system is ready with only|a PC
as the tool for development. Simulators are readily available for different processors and processing devices
employing embedded systems, and a system designer and/or developer need not code for the simulator for
application software and hardware development in the design laboratory. Figure 14.2 shows the detailed
design development process using the simulator.

Section 14.2.1 gives the simulator features. Section 14.2.2 gives the possible inabilities of the simylator.
Section 14.2.3 describes features of a simulator software VxSim. Section 14.2.4 describes features in the
prototype development, testing and debugger tools.

Te

14.3

ing, Simulation and Debugging Techniques and Tools 651
Define - Define .| Define Source
Processor Version Code Window

Y
. Define Port Define
> Ef:“ Code Windows and |~ Register
e Target System Windows
Y
Edit . Inset break
Initial > Edg _‘l?abtla »{ Point or
Data File ~ and lables Program Test
¥
t:g:'(ary - Compile ~—I Use Assembler
+ Correct
) _ | Simulate Target _
Execute >| System Working O.K.
Not Correct
Debug

Fig. 14.2 The detailed design development process using the simulator

2.1 Simulator Features

A typical simulator is mostly run on a PC Windows environment. A typical simulator includes the following

featu

a
@
€
“

¢

res.

) It defines the processor or processing device family as well as its various versions for the target
system.

It monitors the detailed information of a source code part with labels and symbolic arguments as the
execution goes on for each single step.

It provides the detailed information of the status of RAM and ports (simulated) of the defined target
system as the execution goes on for each single step.

D It provides the detailed information of the status of peripheral devices (simulated, assumed to be
attached) with the defined system.

) It provides the detailed information of the registers as the execution goes on for each single step or for
each single module. It also monitors system response and determines throughput.

(6) The Windows on the screen provide the following.

(a) The detailed information of the status of stack, devices and ports (simulated) of the defined
microcontroller system.

(b) Program flow trace as the execution continues. A trace means the output of contents of PC versus
the processor registers. It is an important debugging tool of an assembly language program. Trace
of application software means an output of chosen variables in a function of stepping sequence.
Tracescope gives the time on X-axis and chosen parameter on Y-axis as the program continues
further. (TraceScope is a tool module to obtain a trace of the changes in the modules and tasks
with time on the X-axis. An action-list also produces with specifications of expected time scales.)

' Embedded Sy‘*sms
|

Q)
®)
&)

It provide help Windows on the screen. A help Window gives the detailed meaning of the present
command pointed by the mice-cursor.

It monitors the detailed information of the simulator commands as these are entered from the keybeoard
or selected from the menu.

It incorporates the assembler, dissembler, user-defined keystroke or mouse-selected macros, and
interpreters for C language expressions, as well as for assembly language mnemonics (expressigns). It

thus tests the assembly codes. The user-defined keystroke macro is a very useful facility. For ex
we can define keystroke 1, say, for providing a particular input byte at a port n and a particular
address byte.

ple,
RAM

(10) It supports the conditions (up to 8 or 16 or 32 conditions) and unconditional breakpoints. There is a
feature that halts a program after a definite number of times an instruction executes. Breakpoints and

trace are used in the testing and debugging tool.
(11) It facilitates synchronizing the internal peripherals and delays.
(12) It employs preempting RTOS scheduler support for the high priority tasks.

(13) It simulates the inputs from the interrupts, the timers, ports and peripherals. Hence it tests the codes for

these.
(14) It provides network driver and device driver support.

Simulator sirnulates most functions of a target-embedded system circuit including additional m

ary,

peripherals and buses on the host system itself. It makes application development independent of prior

availability of a particular target system. It also simulates the real time processes and shows the outp
the host system that will be obtained when the codes will actually execute on the targeted particular pr

14.2.2 Simulator Possible Inabilities

A simulator may not resolve timing issues and hardware-dependent problems. Processor speed at thej

and calculating output instances and throughputs at the target.
A simulator may fail to show a bug from the shared data (Section 7.8) as it arises from an interrupt i
particular situation only.

processor may not be adequately mapped with the processor speed at the host for calculating time resIonses
$O

ASIC or P core-manufacturer usually provides an alternative debugging tool in that case. For example,

the processor ARM7 or ARM9 (Section 2.3.3) emulates the ARM functions.on the host processor and sy
A simulater may not be able to take into account of existence internal devices. For example, the

system may use a Java accelerator, whereas the host system may not have that.

A simulator may not be able to simulate the ASICs and IP(s), which may be embedded at the target-sysl%m. An
{(

S:0n

8OT.

target

me

E for
em.

target

A simulator may not be able to take into account pertability problems. For example, target system may have

8-bit data bus between RAM and un-pipelined processor and host have pipelined processor and 32-bit 4

14.2.3 Simulating tool Software

us.

VxSim. VxSim is a simulator tool, which provides a virtual target for developing and debugging the cqdes. It

helps in avoiding the repeated code located in actual target board of the embedded system. Simul
application with VxSim is.of great help in the early development stage, as the VxWaorks RTOS task sc
can be thereughly simulated before implementation into the target.

Table 14.2 gives the features.

g the
uling

T? ing, Simulation and Debugging Techniques and Tools 653

Table 14.2 Features in an Exemplary Simulator VxSim

Supporting Features Activities

Application development tools It supports the UML and ‘RougeWave’. It gives a short design cycle.

Natjve development environment It supports several native development environments and debugging.
Environment may be M8 Visual C++ or GNU tools.

Simulation APIs of the RTOS Simulates use of many APIs of the RTOS for a given hardware.

Debugging capability Debugging capability enables fault finding a much easier task.

Device simulation Simulates devices and device driver behaviour.

Network simulation Network simulation capabilities make it a virtual test bed, which permits

modelling of complex multinode networked systems. For example, a router or
gateway. A network application can simulate internal subnet or a real network.
‘When simulating a network, it generates stacks for various standard network
protocols that include even the IP multicast and IP broadcast.

Userinterface simulation Simulates, for example, a set-up box interface.

14.2.4 Prototype Development, Testing and Debugger Tools for
Embedded System |

A prototype development tool can be used in place of target system hardware. These tools simulate,
compile and debug with a browser. The browser summarizes the final targeted embedded system’s
lete status during the development phase. Table 14.3 gives the features of a set of prototyping tools from
River.

3 LABORATORY TOOLS

.1 Simple Volt-Ohm Meter

le Volt-Ohm Meter can be used to test the target hardware. It has two leads marked red and black. One end
is connected to the meter and the other to points between which the voltage or resistance is to be

ér input pins, and port pins’ initial at start and final voltage levels after the software runs. The meter is set for
when checking broken connections, improper ground connections and burn out resistances and diodes.

654 : ‘Embeddeasy’c*&vs

Table 14.3 Set of Prototyping Tools from WindRiver® l

Tool Features . ‘

ScopeProfile This dynamic execution profiler lets us see, like an oscilloscope waveform, where the
spending its cycles. Performance bottlenecks can then be understood. It shows how mud
the processor spends in each function in the task or ISR.

MemScope Memory usage is a critical aspect of an embedded system. Is there any wasteful use of méih

Is there any memory leak error? Memory leak means that a pointer is incrementing in
unassigned area for a task or stack overflow or writing at the end of an array. MemScope Ei

StethoScope Just as a stethoscope helps a doctor in dlagnosxs, it dynamically tracks the changes 1 any

multiple threads (tasks) that execute. It records the entu'e time history.

TraceScope It helps in tracing the changes with time on the X-axis and an item from the list of actions
TraceScope lets us find the RTOS scheduler behaviour during task switching and notgs }he
times for various RTOS actions. i

CodeTest memory, These tools help in code testing by dynamic memory allocation analysis, controlled flow vnew

trace and coverage trace and code coverage under various real-word situations. The code coverage study he

development of a scalable system.

VxWorks Another power tool that enhances the code development process. VxWorks RTOS prepay
networking stacks stack for sending data on the internet to test high-performance switching devices. The st§

Multicast, IP, UDP, TCP, DNS client, DHCP server, SMTP server, RIPv1 support, RIPv2 sypport,
ARP, Proxy ARP, BOOTP, RLOGINN client and server (for Teinet). An embedded
socket can then connect to multiprotocol LANs, ATM network or SONET or wxreless ACCESS
and intelligent networks.]

VxSim A powerful smmlator tool which provides a virtual target for developing and debug girgo Qihe

A logic probe becomes an important tool when studying long delay effects (>1 second) at a
application is as follows. A short program for a delay and then sending the results at the port using logi
will test the OS timer ticks.

14.3.3 Oscilloscope

Finally, code-downloaded hardware needs testing after completing the edit-test and debug cycle,
simulator or IDE. An oscilloscope is a scope with a screen to display two signal voltages as a function
It displays analog as well as digital signals as a function of time.

. Simulation and Debugging Techniques and Tools

average.) If the bus signals are viewed with AC selection, a false overshoot or undershoot may show
erefore, most of the times, we connect to DC input for observing the waveforms.

Ajclock, if running will show the states 0 and 1 on the scope. The horizontal gap between the successive
rising edges gives us the clock time period. For example, an 8051 using a 12 MHz crystal, there will be states,
eachof period 0.0825 ps. The check for this and ALE (address latch enable) simultaneously at two input
ampljfiers will test the processor activity. Another use of scope is in checking the real-time clock routines and
pulsq width output routine. Real-time software test and debugging are easy using the scopes. The output
signdl on a serial port or the output bit on a parallel port test will provide significant information. Scope is
usable for testing the delay time routines. We can set three delay parameters in three registers and note the
interval taken for the port bit to change with each run. From these three measured intervals, we estimate the
actugl setting in the register for requisite delay. We then run with this delay parameter setting and test, using
the sgope and fine-tune to the exact delay setting.
advantage of scope is its use as a noise detection tool and as a voltmeter. Another use is detection of a
sudden in-between transition between ‘0’ and ‘1’ states during a clock period. This debugs a bus malfunction. A
storage scopeis another version of oscilloscope. It stores the signals versus time. Later we analyse the stored activity.

14.3.4 Bit Rate Meter

A bit rate meter is a measuring device that finds the numbers of ‘1’s and ‘0’s in the preselected time spans.
How|to measure the throughput, the number of bytes per second on a network? Assume that 0xA55A (binary
10101011010) is sent repeatedly as output bits. The number of 1s multiplied by 16 is the throughput in

14.3.5 Logic Analyser

Aftet using the simulator, ICE and debug codes in ROM, in the last stage of debugging, we may use a
troubleshooting hardware diagnostic tool that records the state (i) as a function of time and (ii) as a function
of other states. Logic analyzer can be used in any of these two modes.

gic analyser is a power tool to collect through multiple input lines (say, 24 or 48) from the buses, ports
and fecords many bus transactions (about 128 or more). It displays these on the monitor (screen) to debug
real-time triggering conditions. It helps in sequentially finding the signals as the instructions execute with
respect to a reference. One of the bus signal or clock signal is taken as the reference.

logic analyser can easily debug small-level embedded system. It is a more powerful tool than the scope.
Scope views and checks only two signal lines. A logic analyser is a powerful software tool for checking
multiple lines carrying the address data and control bits and the clock. The analyser recognizes only discrete
voltage conditions, ‘1’ and ‘0’.

Inj the first mode, the analyser collects the logic states as a function of time and stores these in memory and
displays on screen. It tracks the multiple signals simultaneously and successively. There are multiple input
lines{(24 or 48 or more). We connect the lines from the system and IO buses, ports and peripherals. It collects
simuitaneously for the duration of the many bus transactions (about 128 or more). It later displays, using this
tool,{each transaction on each of these on the computer monitor (screen). It also prints the displayed results.
The rhase differences in each input line also give important clues. It debugs the real-time triggering conditions.
1t helps in finding the bus signals and port signal status sequentially as the instructions are executed. A variant
of the logic analyser also provides the analog measurement when needed.

|
i
|
i
|
|

. Embedded Systenis

In the second mode, buses are connected to logic analyzer probe pins and the analyser gives the ¢
states of all the signals at the clock edge. The triggering point for capturing the states can be defined by the
user. The triggering point can be defined as observation of an illegal op-code or processor at particular s
address or a certain port byte at output.

For example, the analyzer is set to measure at first, second, third, fourth and so on clock edges, up to1
128 or any number (say 22°) clock edges from a start address 0x10000. The analyser gives the addres$ and
data bus states in hexadecimal and it gives each control signal state. An advanced version of logic yzer
can also trace the instruction sequences from the observed address and data bus states at the clock edges|from
the given start address. A software engineer can trace illegal instruction or protected address accesses, when
running the codes. :

Certain bugs that intermittently arise can also be recorded with a logic analyser by continuous and repeated
runs of the system.

show the processor register and memory contents. If the processor uses the caches, bus examination glone
may not help. We cannot modify the memory contents or input parameters during trace and display as we do
in a simulator. The effects of these changes are invisible.

With SOC use in embedded systems design, the inner-connections are just not visible to the logic analyzer.

Logic Analyser Inabilities A logic analyser does not help on a program halt due to a bug. It dT‘-not

14.3.6 In-Circuit Emulator (ICE)

Instead of the target system that is copied to obtain an embedded system, can we have a separate unif that
remains independent of a particular targeted system processor or microcontroller? Yes.

We use a target or ICE. Instead of a target circuit, an ICE provides a greater flexibility and ease for
developing various applications on a single system instead of testing multiple targeted systems. Figure 14.3(a)
and (b) shows emulator and ICE, respectively.

ICE is a circuit for emulating the target system that remains independent of a particular targeted system
processor, usable during the development phase for most of the target systems that will incorporate a particular
microcontroller chip. It works independently as well as by connecting to the PC through a serial link. It is a
target circuit minus target microprocessor or microcontroller.

For the Target using
a System Emulator

Microcontrolier

+ ROM

RAM
Cable Emulator

TxD | RS232C +

™1 Port Interfacing

RxD Circuits
(a)

In-Circuit Emulator For Microcontroller
or Microprocesor

Target
R
TxD $232C| | system Cable

Com Emulating Socket
/[STrRo Circuit

(b)
Fig. 14.3 (a) An emulator (b) An in-circuit emulator

ing, Simulation and Debugging Techniques and Tools 657

E is an emulator of the microprocessor of target circuit, such that a host system connects to the ICE
a serial link for debugging purposes. ICE emulates various versions of a microcontroller family
during development phase using the remaining part of the target circuit.

I¢ ‘is an emulator of microprocessor or microcontroller of target circuit in a target emulating circuit.

Hbw does an ICE differ from target? The target uses the circuit consisting of the microcontroller or processor
itself, The emulator emulates the target system with extended memory and with codes-downloading ability
during the edit-test-debug cycles. ICE emulates the processor or microcontroller. It uses another circuit with
:that connects to the target processor (or circuit) through a socket.

e back support hardware package and ICE have the subunits listed and explained in Table 14.4.

T:fble 14.4 Back Support Hardware Package and In-Circuit Emulator (ICE) Subunits

Eleator subunits' Action(s)

Intexface circuit It is for downloading ROM images into EPROM and RAM bytes from the host system into
the emulator. It uses a serial (COM RS232C) port-of PC (Figure 14.3). It helps in embedding
in the program memory part the large application codes directly from:the PC. Codes may be
developed on the host using a high-level language. For example, the development of the
application codes’ designer finds it much more easy to write the large application programs
instead of keying them in machine codes using 20 keys pad at the emulator.

Sediet A multipin male-female socket to insert a general-purpose processor or DSP-or embedded
processor or microcontroller, which connects- to the ICE. through a-cable (usuaily a ribbon
cable) and connectors. (See Figure 14.3(b), right corner socket).

External memory Additional RAM and EPROM or EEPROM, encughfor use:by most possibile targeted systems
and their applications.

Emplator-board A single-line 8- or 12-character display. It is to show the content of memory addresses one

disptay unit by one. Also, it is to show the contents of registers at the various-program steps.

Twenty-keys pad 1tis to enter data and codes directly by the user locally at the memory addresses. These codes
have to-be machine codes.

Registers Additional system registers for the single step as well as full speed test runs during testing of
the system.

Comnectors To plug-in this emulator to the interface circuits and other devices and peripherals that are

typical to the system. A connector for the target system display module is an example. Another
example is for the PC interface circuit.

Keyboard user input board equivalent to the target system expected keyboard.
For example, driver hardware for network or motor or solenoid valve or furnace or printer.

These are in the emulator EPROM or EEROM or at the target system ROM to test and debug
with actual target processor or microcontroller and target circuit.

! Emylators from Orion Instruments, USA embed the logic analyser-like facility (Section 14.3.4). Intel provides the emulators
and foack support packages for its different processors and microcontrollers.

ICE consists of the following: (i) An emulator pod with a ribbon cable, which extends to a processor
or miicrocontroller socket of the target system [Figure 14.3(b)]. We later on insert the processor IC in that socket.

|
|
|

{

658 : Embedded Systdnis

computer. The computer program for the emulator monitors completely the bytes at the registers and me ory
locations. The pod may have some card between its basic circuit and ribbon cable jumper. The replacement
card makes it feasible to use the ICE for another version of a processor or microcontroller family.

What about processor core itself accompanying the ICE core? A feature in ARM7 and 9 proc
(Section 2.3.3) is that these processors have accompanying ICE subunit. It helps in debugging the
hardware.

ICE or emulator disables after the development phase is complete. An actual circuit forms just by coj
the codes developed using the ICE. This circuit after the interconnection to the target processor consists
used processor, required memory chips and keys and display units or other peripherals. This should
exactly the same and as perfectly as at the end of the development phase that we completed using the em
or ICE. An emulator helps in the development of the system before the final target system is ready.

Motorola provides M6BHC11EVM and M68HCEVB as the emulators for 68HC11 microcontroller-
target system. These emulators have the following external connections.

When using an ICE or emulator, software required for implementation phase are the editors, assemblers,
dissembler, simulators and so on (Section 12.4). The host system is just for down-loading the codes t¢ the
emulator and for echoing back the codes and data at the various addresses in the emulator memory. A designer
needs the host system to save machine-level programming time that can be too much for the sophistidated
applications. We can have the additional socket connectors for the different versions of the microcontrgller:
for example, for emulating a 48-pin version as well as a 52-pin version of the 68HC11.

An ICE ‘“visionICE I is an ICE that has the networking capabilities. The latter imbibes by 10/100 Nibps
ethernet connectivity. This lets the ICE accessible to a LAN. Remote debugging is another advantage. It|also
connects to the serial port of the target system.

A ROM emulator [Figure 14.3(a), right side] emulates only a ROM. The target connects through a ROM
socket and also connects to the computer. There is a need during the edit-test-debug cycle for downlo
the codes into the target system flash or EEPROM cyclically. ThOe ROM emulator obviates this need. Mohitor
(Section 14.3.7) codes can be downloaded in ICE ROM. It may run a ‘Power On Self Test’ (POST) program
on bootstrapping. The embedded system when coupled to the RS232C COM port or network port of a computer
can use gdb, a GNU debugger (it is a downloadable freeware).

14.3.7 Monitor

Monitor is a debugging tool for actual target microprocessor or microcontroller in ICE ROM emulator ¢r in
target development board. It also lets host system debugging interface just like an ICE. Monitors from différent
sources differ in their functioning. One typical monitor does the following.

1. Monitor loads the application codes, is also used for corrections in codes and then to test the system.
A command for download can download a new application code into the monitor. A command for
resetting the program restarts the program. Monitor loads the application (in hex file) from the
developing system (at host) that can also be modified later to correct the codes.

2. A part of the monitor runs on host system. Debug monitor codes are downloaded along with the
locator binary image. A write and a read command is used to correct or examine the codes at the
memory addresses of the system. Monitor controls (as per command from debugger) the executidn of
application at full speed, as well as by single stepping during debug phase.

Tds+1g Simulation and Debugging Techniques and Tools

3{ Monitor controls (inserts, removes, modifies) breakpoints as per command from the debugger. A
breakpoint partitions the program into separate segments. When a program segment runs, there is a
pause at breakpoint and then test the result is observed after the run and is examined; then, the segment
: | is run. Breakpoints enable program test running between the different program segments.

4} Monitor can be run in single step mode also.

.5} Monitor facilitates controlled execution of application and controlled display of executing program status.
Taple 14.5 lists the tavget board units with monitor and monitor segments.

Table 14.5 Target Board Subunits Including Monitor

Target Board Subunits Action(s)

Socliet It is for downloading monitor and ROM images into EPROM and RAM bytes from the

= host system into the target. It uses a serial (COM RS232C) port of the host system.
Codes may be developed on the host using a high-level language.

RAM and interfaces RAM and interfaces.

Displlay Display subunit displays the application codes (as per command from debugger) in full
: or in segments, the registers and internal RAM or memory addresses data during

. debugging phase running through the single stepping or breakpoints.

Monilitor segments in ROM Interface commands for interfacing with the host system; command interpreter; loaded

application codes; and data.

Twenty-keys pad It is to enter data and commands of monitor and corrects the codes directly by the user
locally at the memory addresses. These codes have to be machine codes.

Conhectors Connectors for display subunit and printer.

Mo or means a ROM resident program at the target board or ROM emulator connected to ICE. It monitors

the device applications, the runs for different hardware architecture and is used for debugging.

Summary

g following is a summary of what we had discussed in this chapter.

¢ {System codes are tested on the host system as host system has application development tools, large memory.and

; |windows or powerful GUIs. Each module must be tested at the initial stage of its development as well as by

. |integrating all modules. Software can be tested on host machine. It is divided into two parts: hardware (target)-

independent code and hardware-dependent code. Hardware-dependent code has fixed start addresses, fixed port

¢ jand device register and other addresses.

¢ [Simulation by a simulator, which runs on host, helps in system development by simulating target processor or

* |microcontroller, peripherals, devices and network interfaces. Instruction set of target processor or microcontroller

gimulates on the host in a simulator.

¢ {Volt Ohm meter is useful for checking the power supply voltage at source and voltage levels at chips power input
jins, and port pins initial at start and final voltage levels after the software runs, checking broken connections,

%lproper ground connections and burnout resistances and diodes.

» cronss o

mode is to show time on X-axis, andlogic states of the clock signal, bus signals and other signals on ¥-
Second mode-is togive address, data bus ‘and other signal states from a.trigger point to examine illegal o
access in protected address space and other states as a function:of a reférence state.

¢ ICE is-used for debugging aitarget system without using the target processor microcontroller.

¢ ASIC and SoC system hardware cannot be tested by laberatory tools,.such as logic analyser and ICE. | |

e Monitor is used to debug software and hardware for the given target processor or microcontroller.

£
‘ Keywords and their Definitions

Host system : PC orworkstation or laptop-on which an application development is done for a
target system. t

KE : Anemulator of:microprocessor ofitarget.circuit, such that a host system cts
to the ICE through a:serial link for debugging purposes and emulating vatious
versions of a microcontroller family during development phase using the
remaining part of the target circuit. ;

Logic analyser : A power tool to collect:through its- multiple input lines (say, 24 or 48) the

buses, ports.and many bus transactions (about 128 or more) to display thege pn
the. monitor (screen) to debug real-time triggering conditions.

Monitor : Codes.placed:in the emulator EPROM or EEROM or at the target syste QM
to test and debug with.actual target processor or microcontroller-based cifcuit.
Oscilloscope : A scope with a screen to display two signal voltages as a function of tinge, It
displays analog as-well as digital signals as a function-of time. i
Simulator : Software, which runs on host in powerful GUIs environment, helps in 3} m
development by simulating target processor or microcontroller, periphgrals,
devices and network interfaces.
Target system : A system which has hardware similar to that of the final product and omhhlch
' the embedded software has to run. g
Volt-Ohm meter : A meter to measure voltage and resistance between two points to test \gtjge

levels at supply rails, broken connection, resistances and diodes.

’ M Review Questions

Why is host system used for most stages of development and test and simulation?

Give examples of hardware-dependent and hardware-independent codes.

What is a target system? How does the target system differ from the final embedded system?
What do we mean by application software for a target system?

What is back support package? What are the various components of a target emulator? What are the advam*gu of
using an ICE?

1.
2.
3.
4.
5.

16.
17.
18.
19.

2.

ng, Simulation and Debugging Techniques and Tools
FF

Explain the use of the following hardware tools: target emulator and ICE.

What is-the use of a simula*zr iu « development phase?

(How does a calling of interrupt routine help in testing a design?

What is a cross-assembler?

‘What is time mode of a logic analyzer? What is state mode of a logic analyzer?

‘What do we mean by a logic analyzer? What is the use of a logic analyser during the development phase?
A LED circuit is also = powerful analysis tool. How is it so?

What are the r<=s of an oscilloscope?

flow will you use a bit rate meter to measure throughput from a real-time system?

'Why is the I/O instructions platform dependent? Define throughput of an I/O system.

Practice Exercises

Which are the popular simulators used?
Prepare a list of emulator systems available for various microprocessors, microcontrollers and DSPs.

Bxplain with one example the use of each of the following: debugging capability, device simulation, network
simulation and user interface.

Explain with one example the use of each of the following software tools: profiler scope, memory usage scope,
stethescope and scope for trace of program flow, scope for memory allocations and uses and scope for code coverage.

Liist prototyping tools with a popular RTOS.

Appendix 1:
Roadmap for Various
Course Studies

Learned professors and syllabi designers are the best judges. From the author’s experience, the
roadmap shown in the following figure can be adapted by various disciplines of UG, PG and
professional training courses.

- ¢ Laboratory work on Visual
First Semester UG e Chapters 1,4 t09in C++ or Java or J2ME
Computer Scienceand | _ | first-semester papersM || programming
Engineering, and four hour per week theory « Project work on an RTOS
Information Technology HCOS-Il or Windows CE
First Semester UG « Cha

h . pters 1 to 9, 13 and
Communicétion | papers—four hour per e Laboratory work on 8051 or
I L week theory it
nstrumentation and ARM
Control
¢ All chapters and on-line * I’;raol';c:;a':‘mngor;‘%SSocket
web supplement material in L !
PG Embedded Systems [~ second semester L > g:‘o\gl;av';,“;‘.'(gg :ggg_rﬁ‘gft work
: Papers—four oo Windows CE or RTLinux—two
p ry hour per day
o Laboratory work on Socket
¢ All chapters and on-line g:£:2$::2g and RTOS
Embedded System web supplement material > r
" s - h : 1 o Project work on VxWorks,
Professional Training oseone coure LCOS-Il or Windows CE or
RTLinux—four to six hours per
day

Suggested Roadmap for Various Disciplines of
UG, PG and Professional Training Courses

5

i

§2

.

g PRINTED BOOKS

Graham Phillips, Bill Pierce and John Hardin, “Linux Appliance Design: A Hands-On Guide
to Building Linux Appliances”, BS Starch Press, 2007.

Grzegorz Rozenberg, and Frits Vaandrager (Eds.) “Lectures on Embedded Systems: European
Educational Forum School on Embedded Systems, Veldhoven”, Springer, Nov. 2006.

. Michael Barr and Anthony Massa, “Programming Embedded Systems: With C and GNU

Development Tools”, 2nd Edition, O,Reilly, Oct. 2006.

. Nicolas Carter, and Raj Kamal (adoption author), “Computer Architecture”, Schaum Series

TMH Edition, May, 2006.

. Peter Marwedel, “Embedded System Design” — Springer Verlag, New York 2006.

Raghavan P., Amol Lad, and Sriram Neelakandan, “Embedded Linux System Design and
Development”, Auerbach Publications, Taylor and Francis, Dec. 2005.

. Bruno Buoyssounouse and Joseph Sifakis, “ Embedded Systems Design: The Artist Roadmap

for Research and Development”, Springer, 2005.

. Tammy Noergaard, “Embedded Systems Architecture: A Comprehensive Guide for Engineers

and Programmers”, Newnes, Butter-worth Heinemann, Newton, Mass. USA, 2005.

. RajKamal, “Microcontrollers- Architecture, Programming, Interfacing and System Design”,

Pearson Education, Singapore, 2005.

. Jack Ganssle (Ed.), “The Firmware Handbook”, Newnes, Butter-worth Heinemann, Newton,

Mass. USA, 2004.

1]. Jack Ganssle and Michael Barr, “The Embedded © stems Dictionary”, CMP Books, 2003.
. Prasad K. V. K. K., “Embedded Real Time Systems: Concepts, Design and Programming —

The Ultimate Reference” Dreamtech, 2003.

. Douglas Boling “Programming Microsoft WINDOWS CE.NET”, Microsoft, USA, 2003.
. John Catsoulis, “Designing Embedded Hardware”, 2nd Edition, O’Reilly, 2003.
. Prasad K. V. K. K., Vikas Gupta, Avinash Dass, Ankur Verma, “Programming for Embedded

Systems—Cracking the Code”, Wiley, New Delhi, 2002.

. Jonathan W. Valvano, “Embedded Microcomputer Systems- Real Time Interfacing”,

Thomson, Brooks/Cole, 2002.

. Stephen Palmer and John Felsing, “A Practical Guide to Feature-Driven Development”,

Prentice Hall, 2002.

. Stuart R. Ball, Embedded Microprocessor Systems: Real World Design, Butter-worth

Heinemann, Newton, Mass. USA, 1996. (2™ Edition, May 2002).

. Phillip A. Laplante, Real-Time Systems Design and Analysis — An Engineer’s Handbook, 2"

Edition, IEE Press, USA, 1997 (Prentice Hall of India, Third Indian Reprint, April, 2002).

20.
21.
22,
23.
24

25.
26.

27.
28.
29.

30.
31.

32.
. Ed'Sutter, Embedded System Firmware Demystified (with CD), CMP Books, Feb. 2002.

. SteveB. Farber, ARM System-on-Chip Architecture, 2 Edition, Addison Wesley & Benjamin Cummings|

. ‘Eric Giguere, Java 2 Micro Edition-The ultimate Guide to Programming Handheld and Embedded Device

. John Uffenbeck , The 80x86 Family, 3™ Ed., Pearson Education India, 2002.
. Ali Mazidi M. and I:G. Mazidi, The 805! Microcontroller and Embedded Systems, Pearson Education,)

. Jeremy Bentham, TCP/IP Lean Web Servers for Embedded Systems, CMP Books, USA 2080. (Also 2™ H

. ‘Sundrajan Sriram, and Survra S. Bhattacharya, Embedded Multiprocessors- Scheduling and Synchroni.

Raj Kamal, Internet and Web Technologies, Tata McGraw-Hill, 2002.

Bob.Zeidman, Designing with FPGAs and CPLDs, CMP Books, Sept. 2002.

Demuth B. and D. Eisenreich, Designing Embedded Internet Devices, Butterworth Heinemann, July 2
Al'Williams, Embedded Internet Design, McGraw Hill, July 2002.

Miro Samek, Practical StateCharts in C/C++—Quantum Programming for Embedded Systems, CMP
July, 2002.

Tim Jones M., TCP/IP Applications Layer Protocols for Embedded Systems, Charles River Media, June]
Steve Heath, Embedded System Design: Real World Design, Butterworth Heinemann, Newton, Mass. USA
2002.

Michasl.J. Pont, Embedded:-C, Addison Wesley, April 2002.

Lewis D., Fundamentals.of Embedded Saftware: Where C and Assembly Meet, Prentice Hall, Feb. 2002,
Dreamtech Software Team, Programming for Embedded Systems—Cracking the Code, Hungry Minds
2002.

-Craig Hollabaughi, Embedded Linux Hardware and Sofiware, Addison Wesley, March 2002.

Embedded Sy+ms

aoks,

002.
\, May

April

Macii, Benini and Poncino, Modern Design Technologies for Low Energy Embedded Systems, Kluwer Acgdemic

Publishers, March 2002.
George Pajari, Unix Device Drivers, Pearson Education, Indian Reprint, 2002.

Frank Vahid and Tony Givargis, Embedded System—A unified Hardware/ Software Introduction, John Wiley and

Sens, Inc. 2002.

Wayne Wolf, Modern VLSE: System on Chip Design Pearson, Jan. 2002.

Jim Ledin, Simulation Engineering- Build Better Embedded Systems faster, CMP Books, Aug. 2001.
Todd D. Morton, Embedded Microcontrollers, Prentice Hall, New Jersey USA 2001.

Adam Drozdek, Data Structures and Algorithms in C++, Brooks/Cole Thomson Learning, 2001.
Joseph Lemieux, Programming in the OSEK/VDX Environment, CMP Books, Oct. 2001.

Oct. 2001.

Thomas D. Burd and‘Robert W. Brodersen, Energy Efficient Microprocessor Design Kluwer Academic Pusthers,

Wiley, USA, Canada 2000.

First Indian Reprint, 2002.
2002).

Marcel Dekker, Inc., NewYork, USA 2000.

2002.

, John

2000,
dition,

bation,

. Raj Kamal, The Concepts and Features of Microcontrollers (68HC11, 8051 and 8096) -Includes Progr

Legic Controllers, S. Chand & Co. (Originally Wheeler Pubs.), New Delhi, 2000.

. «Bary Nutt, Operating Systems—A Modern Perspective, Addison Wesley Longman, Inc., USA, 2000 (

Education Asia Singapere, India Reprint 2000).

House, 2002).

. Filip Thoen and Franoky Cattheer, Modeling, Verification:and Exploration-of Task-Level Concurrency i

Time Embedded Systems, Kluwer Academic Publishers 2000.

. ‘Sommerville, Software Engineering, Addison Wesley, Reading, MA, USA, 2000.

Rainer Laeupers, Code Optimization Techniques for Embedded Processors: Methods, Algorithms and
Kluwer Academic Publishers, Oct. 2000,

‘Cale, 1999 (First Indian Reprint, Vikas Publishing House, 2001).

ble

son

. Steve White, igital SignalProcessing, ThemsenL.earning — Delmar, 2000 (First Indian Reprint, Vikas Publishing

Real-

Tools,

. ‘William A. Shay, Understanding Data Communications and Networks, 2" Edition, Thomson Learning — Braoks/

ndix 2: Select Bibliography

. Randall S. Janka, Specification and Design Methodology for Real-Time Embedded Systems, CMP Books, Nov.
2001.
. Scott Rixner, Stream Processor Architecture Kluwer Academic Publishers, Nov. 2001.
. Tim Wilmshurst, An Introduction to the Design of Small Scale Embedded Systems - with examples from PIC,
8051, and 68HCO05/08 Microcontrollers, Palgrave, Great Britain, 2001.
. Pfleeger S. L., Software Engineering Theory and Practices, Pearson Education, USA Singapore, India Reprint
2001.
Rogers S. Pressman, Software Engineering, 20" Edition, McGraw-Hill, 2001.
. Arnold S. Berger, Embedded Systems Design—An Introduction to Processes, Tools and Techniques, CMP Books,
Nov. 2001.
. Kirk Zurell, C Programming for Embedded Systems, CMP Books, Feb. 2002.
. Wayne Wolf, Computers as Components—Principles of Embedded Computing System Design, Academic Press
(A Harcourt Science and Technology Company), USA, 2001.
. Jack Ganssle, “The Art of Designing Embedded Systems” (Edn Series for Design Engineers), Newnes, Butter-
worth Heinemann, Newton, Mass. USA, 2000.
. Jane W.S. Liu, Real Time Systems, Pearson Education, 2000-(First Indian Reprint 2001).
. Joseph L. Weber, Using Java™ 2 Platform, Que Corporation, Reprint by Prentice Hall of India, New Delhi, May
i 2000.
6p. Jack W. Crenshaw, Math Toolkit for Real-Time Programming, CMP Books, Aug. 2000.
. David E. Simon, An Embedded Software Primer, Addison Wesley Longman, Inc., USA, (Pearson Education
Asia) Singapore, USA 1999 (India Reprint 2000).
. Barry Kauler, Flow Design for Embedded Systems—A Simple Unified Object Oriented Methodology, CMP Books,
Feb. 1999.
. Franz J. Rammig (Ed.), Distributed and Parallel Embedded Systems, Kluwer Academic Publishers, Netherlands,
1999.
. Alessandro Rubini, Linux Device Drivers, O’Reilly, USA, June 1999.
. Luis Miguel Silveira, Srinivas Devadas, Ricardo A. Reis, VLSI: Systems on a Chip, Kluwer Academic Publishers,
Dec. 1999.
7i1. John Hyde, USB Design by Example, John Wiley & Sons, Inc., New York, 1999.
. Jean J. Labrosse, Embedded Systems Building Blocks, 2" Edition, CMP Books, Dec. 1999.
. Jack G. Ganssle, Art of Programming Embedded Systems, Butter-worth Heinemann, Newton, Mass., USA, 1999.
. Michael Barr, Programming Embedded Systems in C and C++, O’Reilly, USA Aug. 1999 Reprinted Shroff Pubs.
India Reprint August 1999.
. Myke Predko, Programming and Customizing the 8051 Microcontroller, McGraw-Hill, 1999, Third Reprint Tata
McGraw-Hill, 2002.
Jean J. Labrosse, MicroC/OS-1I The Real Time Kernel, R&D Books, an Imprint of Miller Freeman, Inc. Lawrence,
KS 66046, USA, 1999. (Also 2" Edition in 2Cu2 from CMP Books).
. Bruce Powel Douglass, Real-Time UML—Developing Efficient Objects for the Embedded Systems, Addison
Wesley Object Technology Series, 1998.
. Calcutt M.C., F.J. Cowan, and G.H.Parchizadeh, 8051 Microcontrollers—Hardware, Software and Applications,
Arneld (and also by John Wiley), 1998.
. Rick Grehan, Robert Moote and Ingo Cyliax, Real-Time Programming—A guide to 32-bit Embedded Development,
Addison Wesley, 1998.
. John A. Stankovic, Marco Spuri, Krithi Ramamritham and Giorgio C. Buttazzo, Deadline Scheduling for Real-
Time Systems—EDF and Related Algorithms, Kluwer Academic Publishers, Netherlands, Oct. 1998.
Stuart R. Ball, Debugging Embedded Microprocessor Systems, Butter-worth Heinemann, Newton, Mass. USA,
1998.
Niall Murphy, Front Panel—Designing Software for Embedded User Interface, CMP Books, June 1998.
M.Costanzo, Programmable Logic Controllers—The Industrial Computers, Arnold (and also John Wiley) 1997.
. Cady F. M., Software and Hardware Engineering—Motorola M68HC11, Oxford University Press, 1997.

~)
h

]
o

~
J

T

=88

: ,: Embedded S*qns

85. Cady F. M., Microcontrollers and Microcomputers—Principles of Software and Hardware Engineering, Oxford

86.

87.

88.
89.

90.
91.

92.
93.

94,

. Jack G. Ganssle, Art of Programming Embedded Systems Academic USA, 1992.
. Greenfield G. D., The 68HC11 Microcontroller, Saunders College Publishing, 1991.

,_.
COXPXIAN A WLWN—~

—
[\

. http://www.linuxdoc.org [For Section 10.3].
. hup://www.cs.ucr.edu/esd [For Computer Sciences Embedded System Design website of University of California,

13.
14.
15.
16.

17.
18.

University Press, New York, 1997.
Balarin F, M. Cliodo, A. Jurecska, H. Hsieh, A. L. Lavagno, C. Paasserone, A. E. Sangiovanni- Vincenelli, E.
Sentovich, K. Suzuki, and B. Tabbara, Hardware-Software Co-Design of Embedded Systems: A Polis roach
Norwell, MA, Kluwer Academic Publishers, June 1997.

John Forrest Brown, Embedded System Programming in C and Assembly, Van Nostrand, Reinhold, New York,
USA, 1996.

Peter Spasov, Microcontroller Technology- The 68HC11, 2™ Edition, Prentice Hall, Englewood Cliffs, NI, 1996.
Fred Halsall, Data Communication, Computer Networks and Open Systems, 4th Edition, Pearson Edycation,
1996 (Fourth Indian Reprint, 2001).

Silberschatz and P.B.Galvin, Operating Systems, Addison Wesley, Reading, MA, USA, 1996.

Peter Marwedel, and Gerl Gossens, Code Generation for Embedded Processors, Kluwer Academic ishers,
June, 1995.

Daniel Tabak, Advanced Microprocessors, McGraw-Hill, USA 1995.

Gajski, Daniel D., Frank Vahid, Sanjiv Narayan and Jie Gong, Specification and Design of Embedded Systems,
Englewood Cliffs, NJ, Prentice Hall, 1994.

Franklin G. F, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, 34 Ed., Addison
Wesley, Reading, MA, USA, 1994,

. Stewart J. W., The 8051 Microcontroller—Hardware, Software and Interfacing, Prentice Hall, 1993.
. Walter J. Grantham and Thomas L. Vincent, Modern Control Systems—Analysis and Design, John Wiley, 1993.
. Hintz K. J. and Daniel Tabak, Microcontrollers—Architecture, Implementation and Programming, McGraw-Hill,

1992.

Peatman J. B., Design with Microcontrollers and Microcomputers, McGraw-Hill, 1988.

WEBSITE REFERENCES

http://www.dspvillage.ti.com [For Texas Instruments DSP Processor, Section 1.2.4, 2.3.6].
http://www.mentorg.com/seamless [For Section 1.6].
http://www.ti.com/sc/docs/asic/modules/arm7.htm and arm9.htm [For Section 2.3.3].
http://www.arm.com [Section 2.3.3, For ARM Processors].
http://www.ti.com/sc/docs/psheets/abstract/apps/spra638a.htm [For Section 2.3.6].
http://www.eembc.org [For benchmarking of performances of embedded Systems, Sections 2.6 and 13.5}3].
http:// www.java.sun.com/ products/ javacard [For Section 5.7.5].
http://www.webopedia.com/TERM/N/operating_system.htm [For Section 8.1].
http://www.wrs.com [For Section 9.3].

http://www.osek-vdx.org [For Section 10.2].

Riverside, Section 11.2].

http:/fwww.ee.surrey.ac.uk/Personal/R. Young/java/html/cruise.html {For Section 11.3].
http://www.borg.com/~jglatt/tutr/miditutr.htm [For tutorial on MIDI, Section 12.1].
15.http://www.xtec.es/rtee/eng/tutorial/midi.htm [For MIDI interface, Section 12.1].
http://www.misra.org.uk [For Section 12.2 and for Guidelines for the Use of the C Language in Vehicle Based
Software of MISRA (Motor Industry Software Reliability Association)].
http://www.research.ibm.com/securesystems/scard.htm [For Section 12.4].
http://www.home.hkstar.com/~alanchan/papers/smartCardSecurity/ [For Section 12.4].

